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Abstract—Detection of sickle cell disease is a crucial job in
Medical Image Analysis. It emphasizes elaborate analysis of
proper disease diagnosis after accurate detection followed by a
classification of irregularities, which plays a vital role in the
sickle Cell disease diagnosis, treatment planning, and treatment
outcome evaluation. Proper segmentation of complex cell clusters
makes sickle cell detection more accurate and robust. Cell
morphology has a key role in the detection of the sickle cell
because the shapes of the normal blood cell and sickle cell differ
significantly. This review emphasizes the state-of-the-art methods
and recent advances in detection, segmentation, and classification
of sickle cell disease. We discuss the key challenges encountered
during the segmentation of overlapping blood cells. Moreover,
standard validation measures that have been employed to yield
performance analysis of various methods are also discussed. The
content, in terms of methodologies and experiments, of this review
paper is useful to attract researchers working in this area.

Index Terms—Classification, detection, feature extraction, red
blood cell (RBC), segmentation, sickle cell disease.

I. INTRODUCTION:

RED BLOOD CELL (RBC) has a significant role in
the gaseous interchange of external environment and

the living tissue. Haemoglobin is the protein in RBC that
works as a carrier of oxygen [1, 63]. Usually haemoglobin
A dominates throughout the life after six weeks of age. It
contains two alphas and two beta chains [1, 52]. Sickle cell
disease (SCD) is found when a person receives two abnormal
copies of haemoglobin genes, one from each parent. That
means a healthy haemoglobin (HbA) is replaced by sickle
haemoglobin (HbS) [1, 52]. We say a person has sickle cell
traits if he/she contains single abnormal genes, which means
HbS replaces half of the HbA [1]. The life span of healthy
RBC is 120 days, whereas that of a sickle RBC is only 10 to
20 days [1].

The shape of RBCs looks sickle like due to the haemoglobin
polymerization process of deoxygenated molecule with
haemoglobin S [2, 68-72]. Cell morphology has a key role
in the classification of the clinical state of the patient [2,
64-67]. The segmentation of cells from the background and
count them accurately is a challenging work in the field
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Fig. 1. Schematic of sickle cell detection

of biomedicine due to the complex nature of cell [3-7, 73-
78]. Proper separation between touching and overlapping cells
plays a crucial role in automatic recognition and accurate
classification [8-10]. Medical image segmentation becomes
more challenging in the presence of non-uniform intensity,
noise and diversified signal intensity of lesion cells [11]. The
efficiency of the segmentation depends on various charac-
teristics: location, shape, size, area, form factor, elongation,
circularity, texture of cell and ellipticity [2, 12-16].

Fig. 1 represents the schematic of sickle cell detection.
For effective classification, we may employ feature extraction
followed by classification step or may apply the technique
which performs both feature extraction and classification at a
time. The prime motive of the pre-processing step is to boost
the image quality. The purpose of the step is to eliminate the
unwanted noise and suppress distortions.

The prime objective of segmentation for efficient detection
of sickle cell disease is to segregate overlapped cells. It also
concentrates on the separation of surrounding blood compo-
nents (like WBCs and blood plasma) from RBCs and removal
of smaller particles like platelets. Sickle cell segmentation
can be either manual or automatic. In manual segmenta-
tion method, pixels having a similar range of intensities
are segmented manually by experienced persons [17, 18].
The performance of this method deteriorates due to unclear
boundary, imperfect hand eye coordination and low contrast.
This is a subjective process as a segmentation result varies
from person to person. It is a very challenging task to extract
information on high dimensional and multimodal techniques
by using manual segmentation. This problem can be solved
by employing automatic segmentation technique [78-82].

This paper mainly focuses on state-of-the-art as well as
recent methods of sickle cell segmentation, the problem faced
during segmentation and future scope to make the segmen-
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Fig. 2. Sickle cell segmentation techniques

tation more accurate and efficient. We also emphasize on
standard validation criteria utilized to measure the performance
of the sickle cell segmentation method. The rest of the sections
are organized as follows. Section II highlights on various
sickle cell segmentation techniques. Section III emphasizes
on various feature extraction methods, whereas Section IV
provides detailed analysis of classification techniques. Section
V discusses the techniques, which are used for both feature
extraction and classification purposes. Section VI presents
the state-of-the-art validation metrics applied to measure the
performance of segmentation methods. Section VII provides
a detailed analysis of results. It also highlights on clinical
application and hardware implementation. Section VIII em-
phasizes on future scope of the research. Finally, the paper is
summarized and concluded with section IX.

II. SICKLE CELL SEGMENTATION METHODS

This section mainly focuses on various segmentation tech-
niques, which are applied for segmentation of sickle cell
disease. Sickle cell segmentation techniques are mainly cat-
egorised into three types: region based segmentation, thresh-
olding based segmentation and clustering based segmentation,
as shown in Fig. 2.

A. Region based Segmentation

In region based segmentation technique, homogeneity of
intensity has a crucial role in the detection of boundary of an
object in an image. This method is further categorised into four
types: Contour and shape based technique, Region growing,
Region based Level set technique and Graph based technique.

1) Contour and Shape based Technique: In this technique
we have to first define a contour, which is similar to the
target boundary. It modifies the contour in such a manner
that it approaches towards the desire boundary satisfying a
predefined criterion. Deformable model (DM) is a popular
contour based approach for segmentation of medical image.
It begins with arbitrary curves or surfaces, which update itself
depending upon the internal and external forces. The internal

forces are liable for maintaining smoothness of the model
during deformation however, external forces modify the model
to achieve desired shape or boundary. Features of an image can
be extracted by deforming template [19, 20].

Active contour is either parametric active contour (PAC)
[35] or geometric active contour (GAC) [33, 35]. PAC is
expressed as a parameterized curve in Lagrangian formulation
[21, 32]. GAC is characterized as level set of two-dimensional
distance function based on an Euler formula [33, 34]. Snake
is a popular energy optimizing active contour, which extracts
features like lines and edges. It plays a vital role in motion
tracking and stereo matching [21]. Snake is unable to handle
topology change in the evolution of curve [62]. Traditional
active contour approaches are unable to manage the topo-
logical variation of the curve. Level set method emphasises
on numerical analysis of shape and surface. It is adaptive
to track the shapes that modify topology [21-30]. GAC is
preferred over PAC due to its less computational complexity
and adaptive nature of curve topology [35]. Level set method
may effectively detect contour of Sickle cell image. It not only
finds out the cells and cluster of overlapping cell efficiently
but also minimises the noise and removes the internal holes
[2]. A hybrid geometric deformable technique, which utilises
edge based and region based information in a structured
manner for segment medical images effectively, has been
introduced by Mesejo et al. [31]. As active appearance model
(AAM) contains texture information and shape information, it
successfully segments RBCs from background [105].

2) Region Growing: It is a technique in which larger region
is formed by combing pixels or subregions, which satisfy pre-
defined criteria of growth. Basically, this process starts with a
set of seed points. Each seed combines the neighbouring pixels
having similar predefined property (similar intensity range, for
example) like seed [36-38, 98]. The type of image data and the
problem under consideration have a key role in the selection
of similarity criteria. Region growing method [133] effectively
segments medical images which basically contain object and
background. For efficient image segmentation, region growing
is combined with edge detection process [36-38]. Cellular
automata based segmentation methods automatically choose
the seed point to extract retinal blood vessel [39].

3) Region based Level Set Technique : In this method
effective contour is derived based on the level set approach
[84-87]. It is able to handle topological variations of contour
[62]. The energy function of this method is computed by using
K means clustering, Fuzzy c means clustering and Gaussian
mixture model. A new active contour technique proposed
by Chan and Vese [23] is able to detect objects with very
smooth boundary. The curve surrounding the desired object is
deformed by optimizing the energy function. Unlike classical
active contour, it is independent of the gradient of the image.
Huang et al. [40] have presented a novel region based method,
which is able to segment the image by properly managing
intensity inhomogeneities. Energy optimization technique is
used for segmentation of image as well as for bias correction
[40]. The noise and intensity in-homogeneity can be removed
by the local energy extracted from the collective impact on
neighbouring pixels. The intensity sharing between desired
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object and background, is evaluated by the global energy
extracted from the Gaussian model [41].

4) Graph based technique: Nowadays, graph based tech-
niques are widely applied in medical image analysis. The
targeted object of a medical image is detected by using both
foreground as well as background seeds. For the application of
vision (particularly grid graph in vision), min cut and max flow
algorithm gives outstanding performance [42]. In the process
of random walk, every unlabeled pixel should be allocated
to corresponding label based on maximum probability to
arrive [43]. The presence of noise and non-uniform intensity
variation in medical image deteriorate the efficiency of the
graph based techniques. The above problem can be solved by
using region based statistical model to optimize the statistical
region energy with a preceding probability [30].

B. Threshold Based Segmentation

It is the simplest segmentation process, which segments
desire objects by comparing the intensity value of each pixel
with a threshold value [108]. It is categorized into two types
such as global thresholding and local thresholding.

1) Global Thresholding: The global thresholding technique
is known as fixed threshold technique as it has a single
threshold. Generally, intensity values of pixels greater than
or equal to the threshold are considered as objects and the
rest are assumed to be background. For example, let an image
A(x, y) be segmented based with a threshold value T and let
B(x, y) be the resultant binary image after segmentation. The
relation between A(x, y) and B(x, y) is thus given by:

B (x, y) =

{
1, A (x, y) ≥ T
0, otherwise

(1)

Segmentation of medical image using the fixed threshold-
ing technique is a challenging job, due to the presence of
heterogeneous intensity and noise. So, entropy based fixed
threshold techniques are employed for the segmentation of
medical image. Otsu’s threshold technique is employed to get
optimum threshold value automatically [44]. The segmentation
of RBC from WBC and platelets is achieved successfully by
applying fixed threshold on the saturation image (S of HSV
image) as saturation value of RBC differs significantly from
that of WBC and platelets [45] .

2) Local Thresholding: Local thresholding method adap-
tively uses different threshold values for each pixel depending
upon the intensity information of neighbouring pixels. The
local threshold value can be estimated by using previous
knowledge, intensity histogram or statistical property like
mean intensity value. In medical image processing, thresh-
olding technique is employed for pre-processing, since it is
incapable to segment due to the complex nature of medi-
cal image [46]. Boegel et al. have proposed a completely
automated gradient based adaptive thresholding to segment
blood vessel. It first iteratively computes the parameter of fixed
thresholding, then apply adaptive thresholding, based on the
computed parameters [47].

Thresholding can also be classified as manual thresholding
or adaptive thresholding depending upon the selection of the

threshold value. In manual thresholding, the threshold value is
selected based on prior knowledge or some trial experiment.
It is very difficult to accurately segment targeted object from
medical image by using the manual thresholding. On the
other hand, an adaptive thresholding technique automatically
estimates the threshold value depending upon image informa-
tion and therefore, is more accurate. It can be classified as
edge based thresholding, region based thresholding and hybrid
thresholding based upon the way of defining the threshold
value by analysing image information [51].

The selection of threshold values in an edge-based threshold
technique depends upon the edge information about the image.
For example, Cany [49], Sobel [1] and Laplacian [48] edge
detections may be employed for the purpose. Second derivative
information on pixel intensity has a crucial role in the estima-
tion of the threshold value in Laplacian edge detection [48].
In Canny edge detection technique, detection of the potential
edge is based on gradient magnitude information. However,
suppression of it is based on non-maximal suppression and
hysteresis threshold [49]. Rakshit and Bhowmik [1] have
employed Sobel operator for the detection of the sickle cell
from RBC. They concentrate on high spatial frequency to
detect the edge. They estimate the gradient magnitude at each
pixel, which has a key role in sickle cell segmentation [1]. The
gradient of region boundary has a significant role in region-
based thresholding approach [50].

The hybrid thresholding technique is emphasized on proper
segmentation of targeted object by combining diverse image
information. For example, the combination of watershed seg-
mentation and morphological operation is used to enhance
the performance of segmentation [51]. Fadhel et al. [52]
have employed watershed segmentation to segment the over-
lapping cells in RBC image. It has a key role in effective
detection of sickle cell anemia [52]. Sharif et al. [53] have
applied a marker-controlled watershed technique to segregate
the overlapping cells. Before that, they emphasized on the
elimination of WBC based on color-conversion, masking, and
morphological operations. Platelets are removed by employing
morphological operations [53].

C. Clustering Based Segmentation

Clustering is a technique in which objects are combined
together with groups based on similarity characteristics like
intensity, distance, and connectivity. Clustering can be either
hard clustering or soft clustering.

1) Hard Clustering: Hard clustering is a process in which
objects or pixels either belong to a cluster completely or do not
belong to the cluster. K-Means clustering technique is a hard
clustering as well as unsupervised learning technique [54, 98-
101]. K-Means clustering can be applied for the segmentation
of blood image as blood image has a bimodal histogram. It
generates K cluster by combining each object or pixel with
nearest mean [54]. Hidalgo et al. [2] have presented a cluster
separation technique to detect the SCD. They have applied the
ellipse adjustment technique to accurately detect cell [2].

2) Soft Clustering: Soft clustering is a process in which
each pixel or object has a probability or likelihood to belong
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to a particular cluster. Most popular soft clustering techniques
are fuzzy c-means (FCM) and statistical mixture model. FCM
is a clustering technique, which permits a pixel or an object
to belong to multiple clusters [11, 55]. It uses a membership
function to specify whether a pixel lies in a cluster or not.
However, its magnitude specifies the degree of membership
of a pixel in a cluster [55, 98, 102]. FCM segments pixels
into clusters depending on similarity criteria. Thus, it is unable
to segment medical image efficiently due to the presence of
intensity inhomogeneity, noise and heterogeneous intensity of
unhealthy tissue [55]. This problem can be solved by using
modified FCM. Chung et al. [55] have presented a modified
FCM in which membership functions are modified based on
spatial information. It is preferred over traditional FCM as it
improves the performance of segmentation by suppressing the
intensity inhomogeneity and eliminating noisy spot [55].

The performance of segmentation in medical image pro-
cessing can be improved by using a statistical mixture model.
It evaluates the probability of distribution based on maximum
likelihood (ML) or MAP (maximum a posterior) criteria [11].
Gaussian mixture model (GMM) evaluates the pixel intensity
based on Gaussian distribution [11]. It is an efficient statistical
technique. Here exception maximization based ML is applied
to evaluate the probability distribution [11]. Liu and Zhang
[116] have suggested an effective local GMM approach for the
image segmentation. This method [116] adaptively estimates
regularization factor depending upon cost function variation.
It is able to give good performance even if in the presence
of noise and heterogenous intensity [116]. However, it has
certain limitation like over-fitting. MAP approach gives su-
perior performance than ML if it has prior information of
an image. Computational complexity is a major drawback
of popular statistical mixture models like GMM and hidden
Markov random field [11].

III. FEATURE EXTRACTION

This section highlights on various feature extraction tech-
niques, which are applied to extract suitable features. Most
of the authors use morphological features to classify RBCs
for the diagnosis of sickle cell disease [52, 56]. Extensively
used morphological features are aspect ratio, effect factor,
sphericity, RFactor, roundness, and solidity.

Aspect ratio is defined as the ratio of major axis length (M)
to the minor axis length (L) of a cell [56, 131, 137]. It is
also known as eccentricity [56, 131, 135, 137]. Aspect ratio
of a healthy RBC is approximately 1 or slightly greater than
1 whereas an aspect ratio of sickle cell is much larger than 1
[56]. Mathematically aspect ratio is represented as:

Aspect ratio =
M

L
. (2)

Effect factor [56] or metric value [1, 52, 135] is a measure of
a cells roundness. It is also known as circular shape factor [69],
circularity [131, 137] or form factor [129]. Mathematically
effect factor is represented as:

Effect factor =
4π ×Area

Perimeter2
. (3)

Effect factor of healthy RBC is approximately 0.9 whereas
that of sickle cell is smaller than 0.4 [52].

Here, sphericity [131] indicates the closeness between a cell
and the perfect sphere. It is expressed as:

Sphericity =
Inscribed circle radious

Enclosing circle radious
. (4)

RFactor [131] can be represented as:

RFactor =
Convex−Hull

π ×M
. (5)

where, Convex−Hull represents the smallest polygon with
fitted-region. Solidity is the ratio of area to the convex area of
a cell [128, 131]. It is expressed as:

Solidity =
Area

Convex−Area
. (6)

The prime objective of feature extraction is to extract
features of the textures of ROIs (Region of interests). Sharma
et al. [56] employ morphological and statistical features like
aspect ratio, metric value, variance and radial signature to
detect sickle cell anemia and thalassaemia. Fadhel et al. [52]
have used effect factor as a feature to detect sickle cell. Tomari
et al. [57] estimates compactness and seven Hu moment
features [61] for the classification of RBCs.

The feature can also be extracted using classical feature
extraction techniques like Gabor filter [115], Discrete wavelet
transform (DWT) [104, 113], gray level run length matrix
[90], gray level co-occurrence matrix [90], etc. The presence
of noise, intensity inhomogeneity along with high dimen-
sional features makes feature extraction more critical. Linear
discriminant analysis (LDA), Principal component analysis
(PCA) [102, 115], etc. choose the most suitable and optimized
features. Hence, it enhances the classification performance.

IV. CLASSIFICATION

The selected or extracted features have been used for
classification using K-Nearest Neighbour (KNN) [56, 103,
109, 115, 136], Support Vector Machine (SVM) [99, 101, 102,
109, 111, 115, 135, 136], Artificial Neural Network (ANN)
[57, 109-112] or Self organising feature mapping [114]. The
main goal of a classifier is to effectively classify the given
data with superior performance. KNN detects Sickle cell,
elliptocytes, and dacrocytes successfully from RBC which has
a significant role in the diagnosis of sickle cell anemia and
thalassemia [56]. KNN is one of the simplest non-parametric
machine learning methods [56, 127, 136]. It is an instance-
based learning technique, which updates the function locally.
Sharma et al. [56] have employed KNN to classify sickle cells,
dacrocytes, ovalocytes, and healthy erythrocytes. It achieves
80.6% classification accuracy [56]. Tomari et al. [57] have
applied ANN classifier for classification of RBCs as well as
identification of healthy, sick and overlapping cells [57]. ANN
is a supervised machine learning technique, which optimizes
the cost function by updating weights [57]. Here Levenberg-
Marquardt algorithm is used to train feature vectors, which
uses mean squared error as a cost function [57].
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Khalaf et al. [59] have applied various machine learning
techniques: Random Oracle Model (ROM) [117], Levenberg-
Marquardt Neural Network (LEVNN) [118], Trainable deci-
sion tree classifier (TREEC) [119], Random Forest classifier
(RFC) [120], Functional Link Neural Network (FLNN) [121],
Linear combiner Network (LNN) [83], hybrid classifiers H1
and H2 to classify the medical datasets for deciding suitable
medication dosages of sickle cell patients [59].

ROM [117] is an ensemble classifier. It is developed by
a pair of classifiers and the random oracle [88]. Training
data are divided into two groups based on random oracle.
ROM is emphasized in the training of a classifier using each
group of data. For testing purpose, it applies random oracle
to choose a classifier between the pair of classifiers. Then the
classifier is applied to classify the data [88]. LEVNN employs
a Levenberg-Marquardt (LM) algorithm to train the dataset
efficiently [59]. LM algorithm is based on Gauss-Newton [89,
94] and steepest-descent method [89, 94]. It is relatively more
stable than Gauss-Newton algorithm and faster than steepest-
descent technique. LM algorithm can efficiently use to train a
neural network of small and medium size. However, for large
network it is not preferred since it requires huge time for the
estimation of matrix inversion and Jacobian matrix [122].

TREEC [119] has two stages: growth and pruning stage.
The growth stage is emphasized on the iterative splitting of
training-dataset depending upon the regional optimal condition
[119]. The pruning stage is focused on the elimination of out-
liers and noise. It can solve the over-fitting problem and also
improve the accuracy. The pruning stage is faster compared to
the growth stage [119]. FLNN [121] is a flat network, which
has no hidden layer. It is a single-layer-feed-forward network.
It can be efficiently employed for function approximation and
classification purposes [123]. The functional expansion can
enhance the dimensionality of the input-vector. Thus, hyper-
plane developed by an FLNN has superior discrimination
ability. It is faster and computationally efficient than multilayer
Perceptron [123]. RFC is a supervised learning technique. It
generates a group of decision-trees for each randomly selected
subgroup of the training dataset. It can effectively classify
particles based on votes from various decision-trees [124].

LEVNN and RFC are hybridized with the help of the
Levenberg neural network to produce the H1 model [59]. H2
classifier is a hybrid model of RFC and Levenberg-Marquardt
learning neural network based on Fischer discriminate analysis
[59]. The ROM is applied for random guessing baseline.
LEVNN, TREEC, and RFC are nonlinear comparison models.
On the other hand, LNN is a linear comparison model, whereas
H1 and H2 are applied as a testing model. The performance
of H2 is better than any other classifier used in [59].

Extreme learning machine (ELM) is an efficient machine-
learning algorithm. It is a feed-forward neural-network, which
restrict over-fitting problem [135, 136]. Healthy- and sickle-
cells can be successfully classified by employing KNN, SVM,
and ELM classifier [135, 136]. Moreover, the classification-
performance can be further improved by employing ensemble-
learning. It demonstrates superior performance by combining
the prediction of individual classifiers [131]. Maity et al. [131]
have employed ensemble-learning to efficiently classify RBCs.

V. FEATURE EXTRACTION AND CLASSIFICATION

In this section, we discuss various deep learning techniques,
which can be efficiently used for both feature extraction and
classification. Deep learning methods like Deep Convolutional
Neural Networks (CNNs) [60] and Recurrent Neural Networks
(RNNs) [58] can be implemented for accurate and reliable
feature extraction and classification of biomedical datasets of
sickle cell disease, which will help a physician in disease
diagnosis and treatment planning. Both CNNs and RNNs are
supervised learning techniques and both of them need large
amounts of training data [91]. The patterns of a medical image
can efficiently be identified and classified with high accuracy
using deep learning techniques [92-97]. Since in CNNs spatial
relationship is retained while filtering the images, it becomes
more popular in medical image analysis [91]. Xu et al. [60]
have proposed efficient Deep CNNs to classify RBCs into five
classes such as Echinocytes, Discocytes or Oval, Elongated or
Sickle, Reticulocytes and Granular with high accuracy. The
Deep CNNs can efficiently classify sickle cells, which can
help to detect sickle cell anemia [60, 132, 133].

Khalaf et al. [58] have utilized three types of RNN ar-
chitecture: Jordan Neural Network Classifier (JNNC), Elman
Neural Network Classifier (ENNC) and a hybrid Elman-Jordan
Neural Network Classifier (EJNNC) for accurate and reliable
classification of Sickle cell dataset. It will help a doctor
in treatment planning specifically in deciding the suitable
quantity of medication dosage [58].

VI. VALIDATION MEASURES

Validation measure has a significant role in the quantitative
performance analysis of a method as well as finding the
limitation of the method. In this section, we highlight the
image, database, and performance measures.

A. Image
For sickle cell detection/ segmentation/ classification, the

input data is an image of red blood cells. Gonzalez-Hidalgo
et al. [2] have employed three types of images: real image,
artificial image, and synthetic image.

1) Real Image: Validation of segmentation/ classification
using the real image is an appropriate method to ensure the
reliability of the technique. Here the real image is the mi-
croscopic blood image taken from human beings that contain
red blood cells. Real image may contain WBCs, platelets, and
noise. Hence, before doing segmentation or classification real
image should be pre-processed to enhance the image quality.
To boost the segmentation accuracy, we should focus on the
elimination of WBCs, platelets, and noise.

2) Artificial Image: We can automatically develop an ar-
tificial image using computer code rather than using a real
scanner. However, it is impossible to develop a perfect real
image using computer code in an artificial manner.

3) Synthetic Image: Synthetic images are developed from
real isolated cells, which contains few cells.

Since the artificial and synthetic images are only concen-
trated to check the validity of the proposed method, most of
the researchers have emphasized only the real image for the
segmentation/ classification of RBCs.
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B. Database

ErythrocytesIDB is a standard database [2], which is avail-
able at //erythrocytesidb.uib.es/. It contains 196 full field
images and 629 individual cell images (circular, elongated
or other). Some researchers also collect real red blood cell
images from hospitals. Generally, real images are employed
to compute the performance of detection/ segmentation/ clas-
sification. The main objective of the research is to formulate
effective algorithms for the enhancement/ restoration, segmen-
tation, and classification of sickle cell disease which helps the
physician in disease diagnosis as well as in treatment planning.

C. Performance measures

In this section, we concentrate on different performance
measures, which are employed for quantitative performance
analysis of sickle cell segmentation/ classification. The sta-
tistical measures depend on True Positive (TP), False Pos-
itive (FP), True Negative (TN) and False Negative (FN).
TP illustrates the number of accurately detected unhealthy
RBCs (sickle cells). TN characterizes the number of properly
detected healthy RBCs. FP is the number of healthy RBCs
wrongly detected as unhealthy RBCs (sickle cells) whereas
FN represents the number of unhealthy RBCs (sickle cells)
incorrectly identified as healthy RBCs. The performance mea-
sures are represented as follows.

1) Sensitivity: Sensitivity [128] is represented as a ratio of
perfectly classified unhealthy cells (TP) among all unhealthy
cells (TP+FN). It is also known as recall, true positive rate
(TPR) or the probability of detection. It is mathematically
represented as:

Sensitivity =
TP

TP + FN
(7)

A method has a relatively high sensitivity means it can classify
unhealthy cells better than other methods.

2) Specificity: Specificity is characterized as a ratio of
accurately classified healthy cells (TN) among all healthy cells
(TN+FP). It is also known as the true negative rate. It is
represented as:

Specificity =
TN

TN + FP
(8)

A method has relatively high specificity means it can
classify healthy cells better than others. Hence, we prefer the
method, which has maximum sensitivity and specificity.

3) Accuracy: Accuracy is characterized as a ratio of per-
fectly classified cells to a total number of cells classified. It is
a measure of overall system performance. It is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

4) Precision: Precision is a ratio of accurately classified
unhealthy cells (TP) to all detected unhealthy cells (TP+FP).
It is also known as positive predictive value (PPV). It is
represented as:

Pr ecision =
TP

TP + FP
(10)

5) F1 Score: F1 Score is the harmonic mean of sensitivity
and precision. It is mathematically represented as:

F1 Score =
2× (Sensitivity × Pr ecision)

(Sensitivity + Pr ecision)
(11)

6) J Score: J Score is also known as Youdens J statistic. It
is represented as:

J Score = Sensitivity + Specificity − 1 (12)

7) False Positive Rate (FPR): FPR indicates the probability
of false alarm. It can be evaluated as:

FPR = 1− specificity (13)

8) AUC: AUC represents area under the curve: receiver
operating characteristic (ROC). ROC is a curve between
TPR and FPR at different thresholds. It represents a binary
classifiers proper detection capability. AUC ranges between 0
and 1. AUC of an ideal classifier is 1.

VII. TECHNICAL DISCUSSION

Accurate detection and classification of sickle cell disease is
a tough job in automatic medical diagnosis. In this study, we
analyse various techniques for enhancement/ restoration, seg-
mentation, and classification, which is used for the detection
of sickle cell disease. Table 1 highlights the strength, weak-
ness, and performance of various methods used by different
researchers to diagnose sickle cell disease. The performance
analysis of all these methods is a challenging job since
different researchers use different datasets, imaging modalities,
various segmentations, and validation criteria.

This section highlights the quantitative performance com-
parison of some of these methods, which is used for the
detection of sickle cell disease. It could provide a brief
idea about various techniques, which can also be applied
for several other applications. From the above analysis, we
realize that threshold based segmentation is employed as a pre-
processing step before actual segmentation since it is faster and
computationally efficient as well. It is very difficult to achieve
proper segmentation in the detection of sickle cell disease
using a thresholding technique alone since it is independent of
the spatial information of images. As thresholding technique
only depends on the intensity of pixels, so, it is very sensitive
to intensity heterogeneities and noise. Most of the researchers
use the watershed algorithm for the segmentation of overlap
cells. However, circular Hough transform (CHT) and active
contour, particularly the level set method performs better as
compared to watershed algorithm. Since CHT emphasizes on
circular edge pattern, it is more suitable in the separation
of overlapping cells [52, 128, 130, 134]. Region-based tech-
niques, particularly level set method, contour-based method
are widely used in the segmentation of blood cells.

We can efficiently segment overlap cells using a level set
method with high accuracy, as it is robust to topological
variation of the contour. Clustering based techniques like k-
means clustering and FCM are most extensively adopted tech-
niques in the segmentation of blood cells from the background.
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TABLE I
STRENGTH, WEAKNESS AND PERFORMANCE OF VARIOUS METHODS USED BY DIFFERENT RESEARCHERS FOR THE DIAGNOSIS OF SICKLE CELL DISEASE

Author, Year Term Analysis

P. Rakshit
and
K. Bhowmik
2013 [1]

Strengths It is computationally efficient and its execution time is small since it only uses Wiener filter, Sobel
edge-detector and morphological operator (regionprops) to detect sickle cell.

Weaknesses This method does not concentrate on the segmentation of overlapping cell. Thus, it may result false detection.
It only emphasizes the detection of sickle cell. However, it does not pay attention to classify it.

Performance The proposed method efficiently detects cells with an accuracy of 95.8 %.

Gonzalez-
Hidalgo et al.
2013 [2]

Strengths
Here Level set method is employed to generate a contour of an image whereas concave point detection technique
is enforced to determine the point of interest. The proposed method [2] utilizes circumference adjustment technique
for overlapping circular cells whereas it applies ellipse adjustment technique for overlapping elliptical cells.

Weaknesses The input images are not pre-processed. Thus, presence of WBCs and platelets may lead to false detection.

Performance
It accurately detects circular cells in artificial RBC images with 100% efficiency. It achieves 100% efficiency for
the detection of circular cell within a cluster containing two or three overlapping circular cells in real images.
This method detects circular as well as elongated RBCs in real images with an efficiency of more than 98%.

Kothari et
al. 2009 [7]

Strengths They have employed concave-point detection and ellipse-fitting approach to properly segment overlapping-cells.
Weaknesses It is unable to detect large elongated-cells and large overlapping-cells.
Performance It can effectively segment small overlapping-cells with high sensitivity.

Fadhel et al.
2017 [52]

Strengths CHT based segmentation algorithm is more efficient as well as more robust than Watershed segmentation.
Weaknesses Presence of WBCs in an image may lead to false diagnosis as it gives no attention on the elimination of WBCs.
Performance For the detection of sickle cell, CHT executes faster than Watershed segmentation.

Sharif et. al.
2012 [53]

Strengths Marker-controlled watershed can segment small overlapping cells. It can solve the over-segmentation problem.

Weaknesses This technique is unable to segment the overlapping RBCs accurately. This approach is somehow able to segment
touched cells or overlapping of two cells but unable to segment overlapping of more than two cells.

Performance This method is suitable to segment touched cells or overlapping of two cells.

S. S. Savkare
and
S. P. Narote
2015 [54]

Strengths K-means clustering is employed to segment the blood cells from the background. Overlapping cells are segmented
by using watershed segmentation. Over-segmentation problem can be solved using morphological operations.

Weaknesses In low contrast image, K-means clustering is unable to segment cells from background. Post-processing is
required as the segmentation of overlapping cells though watershed segmentation faces over-segmentation problem.

Performance The segmentation approach successfully segment the cells with 95.5 % accuracy.

Sharma et al.
2016 [56]

Strengths KNN classifier effectively classifies RBCs into sickle cells, ovalocytes, and dacrocytes. Implementation of KNN
classifier is relatively simple and it preserves information in the training phase.

Weaknesses The proposed method is unable to segment WBCs from RBCs. This may lead to the false diagnosis of the disease.
The response time of KNN classifier is large for huge datasets and it may be sensitive to undesired features.

Performance This method classifies sickle cells, ovalocytes, and dacrocytes with 80.6% accuracy and 87.2%, sensitivity.

Tomari et al.
2014 [57]

Strengths The proposed method uses ANN classifier, which efficiently classifies non-overlap RBCs with 83% accuracy.
ANN is capable of providing good performance and it restricts data allocation. This makes ANN more attractive.

Weaknesses The proposed method is unable to segment as well as classify overlap cells. The computational complexity of
ANN is high, and it has a large response time.

Performance This method effectively classifies non-overlap RBCs into healthy and unhealthy cells with an overall accuracy of
83%, average recall of 76% and average precision of 82%.

Khalaf et al.
2017 [58]

Strengths The proposed method can successfully classify the quantity of medicine dosages required for sickle cell patients.
Weaknesses It neither emphasizes analysis of blood cell image to detect sickle-cell nor focuses to classify sickle cell disease.

Performance Jordan Neural Network Classifier (JNNC) performs better as compared to other classifiers discussed in this paper
with maximum 98.3% training accuracy and 97.2% testing accuracy in class 1.

Khalaf et al.
2016 [59]

Strengths The proposed method can efficiently classify medicine dosages for sickle cell disease. It may help healthcare
organizations to recommend the accurate medicine dosages to sickle cell patients.

Weaknesses It only concentrates on the classification of medicine dosages. The proposed method does not pay attention to
detection/ segmentation/ classification of RBCs for diagnosis of sickle cell disease using image analysis.

Performance H2 classifier achieves maximum 99.5% accuracy whereas H1 classifier achieves 98.8% accuracy.

Xu et al.
2017 [60]

Strengths Proposed CNN makes feature extraction and classification more robust as well as more efficient. Five-fold cross
validation makes the classification more accurate and more reliable.

Weaknesses
The proposed method is unable to segment overlapped RBCs accurately. It only emphasizes the classification of
RBCs into five classes: Echinocytes, Discocytes or Oval, Elongated or Sickle, Reticulocytes and Granular.
It does not focus on the classification of sickle cell disease based on the severity of the disease.

Performance Deep CNN classifier can efficiently classify RBCs in a robust manner with high accuracy.
Song and
Wang
2009 [106]

Strengths It can successfully segment partially-overlapping cells based on shape information.
Weaknesses It is unable to handle over-segmentation and under-segmentation problem.
Performance 87% of the clusters are segmented successfully. specificity.

Maity et al.
2012 [126]

Strengths An efficient supervised-decision-tree C4.5 is employed to classify RBCs into six sub-classes including sickle-cells.
Weaknesses Presence of overlapping-cells may lead to false diagnosis since it does not segment overlapping-cells accurately.
Performance The proposed method efficiently classify RBCs into six sub-classes with 98.2% precision and 99.6% specificity.

Gual-Arnau
et al.
2015 [127]

Strengths They have suggested four features: W (φ), Wc(φ), Cb(φ) and p(σ, φ), which have a vital role in the
classification. Finally, they have employed KNN to classify healthy-, sickle-, and other unhealthy-cells.

Weaknesses It may demonstrate better performance for the images containing only RBCs. However, in the other images
like ErythrocytesIDB database images, the presence of WBCs and platelets may lead to false diagnosis.

Performance KNN classifier demonstrates superior performance with Cb(φ) than other features with 96.16 % overall accuracy.

Elsalamony
2016 [128]

Strengths It highlights the evaluation of the crucial features: effect-factor and solidity, which differ significantly in healthy-
and sickle- cells. Finally, neural-network is employed to detect sickle-cell properly.

Weaknesses However, CHT is unable to segment overlapping-cells perfectly due to the elongated nature of RBC.
Performance It can successfully detect sickle-cell with unity- specificity, accuracy, and sensitivity.

Acharya
and kumar
2017 [129]

Strengths It can successfully identify 11 sub-classes of RBCs including sickle cells.
Weaknesses It is unable to split overlapping cells perfectly, which may cause false diagnosis.
Performance The proposed-method perfectly detects 11 sub-classes of RBCs with 98% accuracy.



1937-3333 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/RBME.2019.2917780, IEEE Reviews
in Biomedical Engineering

8

Author, Year Term Analysis

Elsalamony
2017 [130]

Strengths Here, shape-signature based approach is used to identify sickle-cell. Moreover, back-propagation neural-
network is applied to classify healthy- and sickle-cells successfully.

Weaknesses CHT is unable to segment overlapping-cells precisely due to the elongated-nature of RBCs.
Performance It identifies sickle-cell with unity-accuracy, unity-specificity, and unity-sensitivity.

Maity et al.
2017 [131]

Strengths The proposed method emphasizes the extraction of crucial shape-based features. Moreover, Adaptive-boosting
followed by ensemble-learning are employed to classify RBCs into 9 classes including healthy- and sickle-cells.

Weaknesses The proposed method is unable to segment overlapping-cells accurately.
Performance It yields superior performance with 99.71% specificity and 97.81% accuracy.

Razzak
and Naz
2017 [132]

Strengths They have proposed a fully-conventional-network based contour-aware-segmentation technique to properly seg-
ment overlapping-cells. Moreover, CNN-based-ELM classifier is employed to classify RBCs into 6 subclasses.

Weaknesses It does not give priority to classify sickle-cell anemia based on severity of the disease.

Performance It can efficiently segment cells with 98.12 % accuracy and 98.36 % precision. Moreover, it can successfully
classify RBCs into 6 subclasses with 90.10 % accuracy and 83.14 % precision.

Zhang
et al.
2018 [133]

Strengths A novel U-Net is employed to make the segmentation more accurate and more robust.
Weaknesses It pays no attention to the elimination of WBCs, which may lead to false diagnosis.
Performance It yields excellent performance with 99.6 % accuracy in single-class RBC segmentation.

Albayark
et al.
2018 [134]

Strengths They have applied CHT to separate healthy-cells from sickle-cells.

Weaknesses However, they have not emphasized on the segmentation of overlapping-cells which may lead to false detection.
The classification performance can further be improved by employing efficient machine-learning techniques.

Performance It classifies healthy- and sickle-cells with 92.9 % precision, 91.11 % accuracy, and 79.05 % recall.
Chy and
Rahama
2018 [135]

Strengths An efficient SVM classifier is employed to classify healthy- and sickle-cells successfully.
Weaknesses It gives no importance to segment overlapping cells. analysis.
Performance It can successfully classify healthy- and sickle-cells with 95 % accuracy and 96.55 % sensitivity.

Chy and
Rahama
2019 [136]

Strengths Extreme learning machine (ELM), SVM, and KNN are employed to classify healthy- and sickle-cells.
Weaknesses It does not emphasize the classification of various stages of sickle cell disease (minor, major, and trait).
Performance ELM yields superior performance than KNN and SVM with 87.73% accuracy and 95.45% precision.

For efficient segmentation, an image is pre-processed before
the segmentation stage, which enhances the performance of
it. The recent advancements in machine learning and deep
learning make the feature extraction and classification more
popular in medical image analysis for disease diagnosis.
Machine learning techniques like KNN [56, 103, 109, 115,
127, 136] and ANN [57] are used for efficient classification
of RBCs, which has a vital role in the accurate detection of
SCD. Nowadays, deep learning methods especially, CNN and
RNN are gaining more importance in medical image analysis
[132, 133]. These techniques can dramatically enhance the
performance of classification in the detection of SCD.

A. Performance Comparison

Each of the three methods ([2], [8] and [106]) is able to
detect artificial-circular-object accurately in an image hav-
ing two-object clusters. These methods demonstrate excellent
performance with 100% efficiency. The detection is based
on circumference adjustment technique. Table II represents
the detection efficiency of various methods (concave point
detection followed by circular adjustment) proposed in [2],
[8] and [106] while using artificial images having three-object
clusters. Some concave points were falsely identified in Song
and Wang [106] proposed method as the estimation of concave
points rely on the distance to the skeleton. Moreover, these
points may produce invalid lines. Those lines can be treated
as valid, especially with noisy contours. It detects the objects
with an efficiency of 71.30 % as the concave points are
improperly identified. The concave point detection technique
proposed by Agam et al. [8] gives false positives due to
inaccurate circumference adjustments. However, it achieves
89.16% detection efficiency, which is better than the method
proposed by Song and Wang [106].

Gonzalez-Hidalgo et al. [2] have proposed a technique that
achieves perfect circular adjustment using artificial images

TABLE II
DETECTION OF THREE OBJECT CLUSTER USING THE CIRCULAR

ADJUSTMENT AND CONCAVE POINT DETECTION METHODS PROPOSED IN
[2], [8] AND [106]

Name of the method Total no.
of objects

Objects
detected

Efficiency
(%)

Concave region extraction and
erosion limit [106] 6000 4278 71.30

Chromosome contour extraction,
concave point detection and
hypothesis verification [8]

6000 5350 89.17

Level set method, Concave
point detection and
circular adjustment [2]

6000 6000 100.00

with 100% detection efficiency. The accurate circular adjust-
ment can be achieved due to the correct detection of concave
points. The k-curvature technique proposed in [8], may lead
to improper detection of the point of interest to circular and
elongated objects due to inaccurate local maxima. Since the
method proposed in [8] emphasise on curvature variation
only in one direction, specious local maxima is detected in
the k-curvature for which more numbers of concave points
have been identified. However, Gonzalez-Hidalgo et al. [2]
focus on the estimation of k-curvatures in both horizontal and
vertical directions. Then, they multiply the absolute values
these curvatures and identify the concave point based on
a threshold. The method proposed in [2] can remove fake
concave points successfully by rejecting these points whose
multiplication results less than the threshold. Hence, it [2]
yields superior performance with high detection accuracy.

The performance of the detection of circular and elongated
artificial-objects utilising artificial images of two-object clus-
ters and three-object clusters with ellipse adjustment technique
proposed by [2] is illustrated in Table III. In a rare occasion,
artificial-objects are overlapped ambiguously and hence, it is
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TABLE III
THE DETECTION EFFICIENCY OF ELLIPSE ADJUSTMENT TECHNIQUES

PROPOSED IN [2] FOR ARTIFICIAL IMAGES

Two-object clusters Three-object clusters

Type of
objects

Obje-
cts

Detected
objects

Effic-
iency
(%)

Obje-
cts

Detected
objects

Effic-
iency
(%)

Circular 1975 1949 98.68 2991 2908 97.23
Elongated 2025 1942 95.90 3009 2883 95.81
Circular &
elongated 4000 3891 97.28 6000 5791 96.52

TABLE IV
CELL DETECTION IN TWO- AND THREE- CIRCULAR RBCS CLUSTER BY

APPLYING THE TECHNIQUES IN [106], [7] AND [2]

Two-RBCs cluster Three-circular- cluster
Proposed
method [106] [7] [2] [106] [7] [2]

Circular
cells 60 60 60 33 33 33

Detected
cells 55 60 60 19 30 33

Efficiency (%) 91.67 100.0 100.0 57.58 90.9 100.0

not possible to detect intersection points accurately. Therefore,
it is very difficult to detect the artificial-object properly. The
detection efficiency of two-object clusters of circular and elon-
gated artificial-objects are 98.68% and 95.90%, respectively.
But, the detection efficiency of three-object clusters of circu-
lar and elongated artificial-objects are 97.23% and 95.81%,
respectively. The proper detection of intersection points may
become more challenging while the area of overlapping is
large. The three-object cluster has more overlapped area than a
two-object cluster. Hence, the detection of intersection points
becomes more difficult. So, it achieves better performance for
two-object cluster than the three-object cluster [2].

Table IV illustrate the outcomes achieved after using the
techniques proposed in [106], [7] and [2] to real images
of two- and three- RBC clusters. The method proposed in
[106] requires to detect more concave points since the contour
has some noise even after filtration. These extra points are
harmful as they develop new line divisions and these points
become useless for other lines. In noisy contours, invalid lines
might be treated as valid. For two-RBC cluster and three-
RBC cluster, the technique proposed in [106] achieves 91.67%
and 57.58%, respectively. For the method proposed in [7], in
spite of ellipse fitting has been used, the technique depends
on line segmentation. It gives the better result as compared
to method proposed in [106]. For two-RBC cluster, it can
accurately detect all the circular cells with 100% efficiency.
However, the detection efficiency reduces to 90.90% for three-
RBC clusters as this method is also based on line segmentation
even if ellipse fitting is used. The algorithm proposed in [2] can
accurately detect all the circular RBCs with 100% efficiency
for two-RBC cluster and three-RBC cluster as well. Moreover,
its performance remains unaffected by the contour noise.

Table V illustrates the outcomes of ellipse adjustment after
executing the techniques proposed in [7] and [2] using two-
RBC and three-RBC clusters. The technique proposed in [7]

TABLE V
THE DETECTION EFFICIENCY OF ELLIPSE ADJUSTMENT METHODS

SUGGESTED IN [7] AND [2]

Proposed method [7] [2]
Circular cells 83.51% 98.97%
Elongated cells 71.45% 100.00%

TABLE VI
CONFUSION MATRIX FOR THE DETECTION OF NORMAL AND ELONGATED

RBCS USING SYNTHETIC CELL CLUSTERS [2]

Normal
RBCs
estimated

Elongated
RBCs
estimated

Sensi-
tivity

Speci-
ficity

Preci-
sion

Normal
RBCs 612 0 1.00 0.99 0.99

Elongated
RBCs 4 359 0.99 1.00 1.00

can detect healthy RBCs and sickle cells with an efficiency
of 83.51% and 71.45%, respectively since it is based on line
segmentation and hence it is not suitable for the accurate
detection of large elongated cells and overlapping cells as well.
The technique proposed in [2] can accurately detect all the
sickle cells with 100% efficiency whereas it is able to detect
normal cells with an efficiency of 98.97%.

Table VI illustrates the classification performance of the
method proposed by Gonzalez-Hidalgo et al. [2] on a synthetic
image. It is focused on the evaluation of the normal and
elongated RBCs estimation. In this experiment, the precision
of normal RBCs is enhanced to 0.99 since all the normal RBCs
are correctly classified whereas only four elongated RBCs are
wrongly classified as normal RBCs. The above results indicate
that the algorithm proposed in [2] can efficiently detect normal
RBCs and sickle cells with high accuracy. It can properly
detect the concave points. Moreover, the performance of the
method is better than the method proposed in [106] and [7].

Table VII depicts the detection accuracy of the method
proposed by Rakshit and Bhowmik [1]. Here, five samples
are processed to evaluate the overall accuracy of the system.
It can successfully detect sickle cells with an overall accuracy
of 95.8%. However, we can achieve more accurate and more
reliable results by using a database having a large number of
images. From Table VIII we can clearly observe that CHT
performs better than the watershed algorithm [52]. The result
illustrates that CHT is more robust as well as more efficient
as compared to the watershed algorithm due to a proper
estimation of healthy cells and sickle cells as well. CHT is

TABLE VII
EVALUATION OF THE SICKLE CELL DETECTION ACCURACY OF THE

METHOD PROPOSED BY RAKSHIT AND BHOWMIK [1]

Sample RBC
count TP TN FN FP Accuracy Overall

accuracy
1 10 3 7 0 0 1.000

0.958
2 29 9 17 1 2 0.897
3 17 6 10 0 1 0.941
4 21 4 16 0 1 0.952
5 14 4 10 0 0 1.000
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TABLE VIII
RBCS COUNT USING WATERSHED AND CHT [52]

Segmentation
method

Total
number
of count

Healthy
RBC

Abnormal
RBC

Elapsed
time in
seconds

Watershed 233 123 110 11.74394
CHT 233 138 95 8.710206

TABLE IX
COMPARISON OF FEATURES OF FOUR CLASSES OF RBCS [56]

Class Effect
factor

Variance of
radial signature

Aspect
ratio

Normal RBC (A) 0.9089 0.0946 1.0283
Sickle-cell (B) 0.2543 0.9266 6.2704
Elliptocyte (C) 0.8215 0.5109 1.8701
Dacrocyte (D) 0.6993 0.5709 1.7334

also faster than the watershed algorithm since on CHT circular
contours are generated based on voting patterns and after
that, local maxima are selected. However, watershed algorithm
needs to detect the local minima from which water-drop flow
to desired minima, which is a time-consuming process.

Sharma et al. [56] apply KNN classifier to effectively clas-
sify RBCs into four classes such as class A-sickle cells, class
B-dacrocytes, class C-elliptocytes, and class D-normal RBCs.
The features of these four classes are illustrated in Table IX.
Table X represents the confusion matrix of the KNN classifier.
Sickle cells, normal RBCs, elliptocytes and dracocytes are
accurately detected as well as efficiently classified using the
method proposed in [56] with 80.6% classification accuracy.

Xu et al. [60] employ deep CNN to efficiently classify
RBCs into five classes: Echinocytes, Discocytes or Oval,
Elongated or Sickle, Reticulocytes and Granular in the coarse
labelling test. The fluctuation may arise due to over-fitting or
over-training and this problem can be solved by optimizing
the batch size and employing the dropout scheme proposed
in [107]. In this [60] proposed method convolutional layer
(p=0.5) is employed prior to dropout layer. Table XI illustrates
the variation on train error, test error, loss and execution time
corresponding to the number of iterations based on the Exp-1
dataset of [60]. From Table XI we notice that both the training
error and loss can be optimized by increasing the number of
iterations [60]. In the training phase, the classifier achieves
excellent performance [60]. The predictive performance of
deep CNN can be efficiently computed by implementing k-
fold cross-validation. Xu et al. [60] employed 5-fold cross-
validation for the predictive performance evaluation of classi-

TABLE X
CONFUSION MATRIX OF KNN CLASSIFIER [56]

A B C D Accuracy
A 3 0 0 0 100%
B 0 13 0 1 92.9%
C 0 1 4 0 80.0%
D 0 0 4 5 55.6%
Accuracy 100% 92.9% 50.0% 83.3% 80.6%

TABLE XI
COMPARISONS OF LOSS, TRAIN ERROR, TEST ERROR AND EXECUTION

TIME BASED ON NUMBER OF ITERATION [60]

Iteration Training error Loss Test error Time (s)
25 0.2094 0.5879 0.3500 2528.4
30 0.1598 0.3867 0.2750 2940.1
40 0.1213 0.3637 0.2469 4011.5
60 0.1026 0.2805 0.2094 5869.6

TABLE XII
FIVE-FOLD CROSS VALIDATION TO CLASSIFY RBCS INTO 5 CLASSES [60]

Fold
no.

Training
set

Evaluation
set

Training
error (%)

Evaluation
error (%)

Fold 1 5664 1416 9.14 10.54
Fold 2 5664 1416 9.07 11.16
Fold 3 5664 1416 8.52 10.08
Fold 4 5670 1410 9.84 11.27
Fold 5 5658 1422 8.39 10.55
Mean accuracy 91.01% 89.28%

fier. The total RBC set is further divided into five subsets, and
each subset contains an approximately same number of RBCs.
For each fold, one of the subsets is selected as a validation set,
whereas remaining subsets are employed for training purposes.
Finally, prediction score is evaluated as the mean of validation
score of five folds. It enhances the stability as well as the
reliability of the classifier. However, the training samples are
repeated in the k-fold cross validation. Therefore there is a
possibility of more or less biased output (validation score).
On the other hand, recently proposed nested cross validation
method [125] could be used to overcome this problem. It is
more reliable. It is also useful to avoid over-fitting and under-
fitting problems [125].

From table XII we observe that the average training ac-
curacy of the classifier with five-folds is 91.01% [60]. The
classifier produces minimum train error in fifth fold whereas
it has optimum evaluation error in the third fold [60]. Table
XIII represents the confusion matrix of RBC classification,
which uses coarse-labelled RBC dataset [60]. From the table
we observed that the class containing elongated and sickle cell
having 93.6 % accuracy. The overall accuracy of deep CNN
among five classes is 89.9%.

Xu et al. [60] apply refined-labelled RBC dataset to evaluate
the performance of deep CNN classifier, which classifies RBCs
into eight classes: echinocytes, discocytes, oval, elongated,
sickle, reticulocytes, stomatocyte and granular. They also
emphasize 5-fold cross-validation. The classification outcomes
are displayed in Table XIV. From the table, we observe that
the average training accuracy and average evaluation accuracy
are 89.69% and 87.5%, respectively. Table XV illustrates the
confusion matrix of refined-labelling RBC classification [60].
The deep CNN classifies RBCs into eight classes with overall
accuracy of 88.6%. The overall accuracy in refined-labelling
classification is smaller than coarse-labelling [60].

The main objectives of Table XIII and XV are to demon-
strate the classification performance using various types of
RBCs and to evaluate the overall performance. Moreover, a
comparative performance analysis between the classes can be
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TABLE XIII
CONFUSION MATRIX OF RBC CLASSIFICATION BASED ON EXP II DATASET OF [60] (COARSE LABELLING)

Discocytes
or Oval Echinocytes Elongated

or Sickle Granular Reticulocytes Accuracy
(%)

Discocytes or Oval 462 1 15 14 3 93.3
Echinocytes 0 147 8 5 10 86.5
Elongated or Sickle 18 0 417 10 0 93.6
Granular 16 10 0 120 13 75.5
Reticulocytes 0 10 4 0 150 91.5
Accuracy (%) 93.1 87.5 93.8 80.5 85.2 89.9

TABLE XIV
FIVE-FOLD CROSS VALIDATION TO CLASSIFY RBCS INTO 8 CLASSES [60]

Fold
no.

Training
set

Evaluation
set

Training
error (%)

Evaluation
error (%)

Fold 1 5772 1452 10.15 12.41
Fold 2 5772 1452 11.02 13.23
Fold 3 5772 1452 10.26 12.99
Fold 4 5790 1434 10.13 12.51
Fold 5 5790 1434 9.98 11.38
Mean accuracy 89.69 % 87.50 %

achieved if each class having the same number of cells. Since
the number of various types of RBCs may vary image to
image, the number of cells in each class may differ.

C4.5 supervised-decision-tree can effectively classify RBCs
into six subclasses: teardrop, microcytic, elliptocyte, macro-
cyte, healthy, and sickle-cell [126]. It demonstrates excellent
performance with 98.1 % sensitivity, 98.2 % accuracy, and
99.6 % specificity as shown in Table XVI.

Gual-Arnau et al. [127] have extracted crucial features:
UNL-F, Effect-Factor and Elliptical-Shape-Factor (EF-ESF),
W (φ), Wc(φ), Cb(φ), and p(σ, φ) for effective classification
of RBCs [127]. KNN classifier is employed on each of the
six-features individually and finally, there performance are
compared. From Table XVII, XVIII, and XIX we observe
that KNN classifier demonstrates superior performance while
considering Cb(φ) feature than other five features [127].

In the feature-extraction stage, Elasalamony et al. [130] have
extracted geometrical-shape-signature whereas Elasalamony et
al. [128] have extracted solidity and effect factor. In both cases
([128], [130]) back-propagation neural-network is employed to
detect sickle-cell efficiently. From Table XX, we observe that
both methods ([128], [130]) can detect sickle-cell successfully
with 100% accuracy, sensitivity, and specificity each.

Archarya and Kumar [129] have emphasized the extrac-
tion of crucial features: diameter, deviation, shape-geometric-
feature, area-proportion, and form-factor to effectively classify
RBCs into 11 subclasses. From the Table XXI, we observe
that the features selected in [129] demonstrates superior ac-
curacy than others [129]. Maity et al. [131] have employed
single-rule-engine, C4.5 decision-tree, and ensemble-learning
to classify RBCs into seven subclasses including sickle-cell.
Table XXII depicts ensemble-learning demonstrate superior
performance than other two classifiers [131].

Table XXIII illustrates that the fully-conventional-network
based contour-aware-segmentation can efficiently segment
RBCs with 98.12% accuracy and 99.17% recall [132]. Razzak

[132] has suggested a CNN-based-ELM classifier to classify
RBCs into six subclasses: Normal, Elliptocytes and Ovalocytes
(E & O), Burr, Sickle (Sic), Acanthocytes (Acan), and Helmet
(Helm). Table XXIV depicts that the proposed classifier can
classify normal and sickle-cell with 93.69%, 89.46% accuracy,
respectively [132]. Table XXV depicts that the deformable U-
Net demonstrates superior performance than region-growing
and U-Net with 99.60% accuracy and 96.14% precision [133].

Albayrak et al. [134] have suggested a CHT based detection
technique, which detects healthy- and sickle-cells with 91.11%
accuracy and 92.9% precision as shown in Table XXVI.

Chy and Rahaman [135] have employed SVM, which can
efficiently classify healthy and sickle-cells with 95 % accuracy
and 96.55 % sensitivity as shown in Table XXVII. Chy and
Rahaman [136] have employed SVM, KNN, and ELM clas-
sifiers to classify healthy and sickle-cell. Moreover, they have
compared their performance, which is represented in Table
XXVII. From the table, we observe that ELM demonstrates
superior performance than KNN and SVM [136].

B. Clinical Uses

In this review, we discuss various state-of-the-art methods,
which are implemented for the detection of sickle cell disease
(SCD). We observe a continuous improvement in research for
enhancement or restoration, segmentation, and classification
of RBCs to make the detection of sickle cells more robust
as well as more accurate. The rapid growth of image pro-
cessing techniques, particularly machine learning and deep
learning techniques motivate researchers to design a point-
of-care device for the detection and classification of SCD for
real-time applications. However, there are certain challenges
like the presence of noise, inhomogeneous intensity, overlap
RBCs and lack of standard databases, which are responsible
for the degradation in the performance of these techniques.
The research will be carried out to enhance the performance of
traditional techniques as well as to develop new, more efficient
algorithms for the detection of SCD.

Many of the methods available in the literature emphasize
on the detection, segmentation, and classification of RBCs.
However, no proposed method focuses on the severity of the
SCD. So, there is sufficient scope to carry out research to
classify SCD based on the severity of the disease which will
deliver more accurate and realistic results. It will also help
physicians in proper diagnosis and treatment planning of SCD.
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TABLE XV
CONFUSION MATRIX OF RBC CLASSIFICATION BASED ON EXP II DATASET OF [60] (REFINED LABELLING)

Disccytes Echinocytes Elongated Granular Oval Reticulocytes Sickle Stomatocyte Accuracy (%)
Discocytes 381 0 1 7 16 0 0 0 94.0
Echinocytes 0 123 2 2 0 10 0 1 89.1
Elongated 5 0 243 8 14 0 18 0 84.4
Granular 0 4 3 100 2 1 0 0 90.9
Oval 12 0 12 1 106 0 0 0 80.9
Reticulocytes 0 6 0 3 0 116 0 0 92.8
Sickle 0 9 15 0 6 0 180 1 85.3
Stomatocyte 0 0 0 0 0 2 2 26 86.7
Accuracy (%) 95.7 86.6 88.0 82.6 73.6 89.9 90.0 92.8 88.6

TABLE XVI
PERFORMANCE OF C4.5 SUPERVISED-DECISION-TREE [126]

Classifier Specificity Sensitivity Precision
C4.5 99.6 % 98.1 % 98.2 %

TABLE XVII
OVERALL CLASSIFICATION-ACCURACY OF KNN CLASSIFIER [127]

EF-ESF UNL-F Wc(φ) p(σ, φ) W (φ) Cb

79.08% 92.48% 93.91% 94.23% 95.99% 96.16%

TABLE XVIII
COMPARISION OF PRECISION USING KNN CLASSIFIER [127]

Cell
Type

UNL-F
(%)

EF-ESF
(%)

W (φ)
(%)

Wc(φ)
(%)

p(σ, φ)
(%)

Cb

(%)
Sickle 91.66 94.9 96.69 95.36 95.32 95.09
Normal 92.97 63.9 97.68 93.86 94.39 98.12
Other
RBCs 93.50 95.7 94.24 92.80 93.23 95.86

TABLE XIX
COMPARISION OF SPECIFICITY USING KNN CLASSIFIER [127]

Cell
Type

UNL-F
(%)

EF-ESF
(%)

W (φ)
(%)

Wc(φ)
(%)

p(σ, φ)
(%)

Cb

(%)
Sickle 90.24 97.35 95.96 92.86 93.10 95.48
Normal 90.59 73.05 95.29 92.71 93.18 95.29
Other
RBCs 96.87 99.03 96.88 96.39 96.63 97.83

TABLE XX
SICKLE CELL DETECTION PERFORMANCE OF THE METHOD PROPOSED IN

[128] AND [130]

Performance Elasalamony et al. [128] Elasalamony et al. [130]
Accuracy 100 % 100 %
Sensitivity 100 % 100 %
Specificity 100 % 100 %

TABLE XXI
COMPARISON OF DETECTION ACCURACY OF RBC SUBCLASSES [129]

Image
labeling

Gray
threshold

Morphological opera-
tions and metric value

Method prop-
osed in [129]

83.00% 94.58 % 95.80% 98.00%

TABLE XXII
COMPARISON OF CLASSIFICATION PERFORMANCE [131]

Method Specificity Accuracy Sensitivity Precision
Single-rule-engine 97.90% 96.25% 95.80% 96.23%
C4.5 decision-tree 98.90% 97.10% 96.00% 97.89%
Ensemble-learning 99.71% 97.81% 97.33% 98.00%

TABLE XXIII
RBC SEGMENTATION PERFORMANCE [132]

TP TN FP FN Accuracy Precision Recall
4219 724 21 42 98.12% 98.36% 99.17%

TABLE XXIV
RBC CLASSIFICATION PERFORMANCE [132]

Performance Normal E & O Burr Sic Acan Helm
Accuracy (%) 93.69 90.00 87.49 89.46 86.94 89.58
Precision (%) 90.67 77.51 74.00 83.19 75.75 78.7

TABLE XXV
PERFORMANCE OF SINGLE-CELL RBC SEGMENTATION [133]

Method Precision Accuracy F1 Score
Region-growing 72.23% 96.80% 0.7036
U-Net 95.45% 99.42% 0.9566
Deformable U-Net 96.14% 99.60% 0.9604

TABLE XXVI
HEALTHY- AND SICKLE-CELL DETECTION PERFORMANCE [134]

TP TN FP FN Recall Precision Accuracy
185 467 14 49 79.05% 92.90% 91.11%

TABLE XXVII
HEALTHY- AND SICKLE-CELL CLASSIFICATION PERFORMANCE [135]

Classifier Sensitivity Accuracy
SVM 96.55% 95.00%

TABLE XXVIII
HEALTHY- AND SICKLE-CELL CLASSIFICATION PERFORMANCE [136]

Method Sensitivity Accuracy Precision Specificity F1
KNN 75.00% 73.33% 90.00% 66.67% 0.8181
SVM 83.33% 83.33% 95.45% 83.33% 0.8889
ELM 87.50% 87.73% 95.45% 83.33% 0.9130
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C. Hardware Implementation

Proper detection of sickle cell disease has a key role in the
accurate diagnosis of disease as well as in treatment planning.
The design of a point-of-care device for the detection and
classification of sickle cell disease for real-time applications
needs special care since the majority of techniques faces high
computational complexity. In level set techniques the contour
of the RBCs is represented by a 2-D function, which relies on
the characteristics of the image containing RBCs. Hence, while
level-set techniques are implemented in hardware for real-
time application in spatial domain with parallel processing,
it needs various interpolation operations in each iteration. The
major advantage of the level set method over active contour is:
the level set method is able to manage topological variation.
Region growing technique may be effectively employed with
parallel processing and shared memory for the segmentation
of sickle cell, which plays a vital role in disease diagnosis
for real-time application. Sharing of the memory makes the
segmentation faster as it restricts several times reading of a
seed from the global memory. On the other hand, special
care should be taken so that at a particular time a specific
region should access a neighbouring element. Hardware im-
plementation of classical FCM is not preferred for real-time
application since it has high computational complexity as
the membership functions are computed based on Euclidean
distance and for a big database it needs large time. Hence,
for real-time applications, we may implement modified FCM,
which optimizes the computational time.

Thresholding based techniques are more suitable for parallel
processing since segmentation of pixels only depends on the
intensity of the pixel and threshold value; however, indepen-
dent of other pixels. Moreover, it requires comparatively less
memory and no synchronization. At the same time, a hardware
implementation of it needs special care as it is very sensitive
to noise and intensity inhomogeneity.

Feature extraction and classification techniques are more
suitable to design a point-of-care device for the detection and
classification of sickle cell disease for real-time applications.
At the time of image transformation, we need an interpolation
operation for hardware implementation. Hardware support
interpolation makes the system more efficient. Hardware im-
plementation of KNN is simple since it depends on linear
computation. Thus, it is more suitable for parallel processing.
For classification purpose, ANN might be preferred since the
feed-forward network is employed for hardware implementa-
tion. Recently, deep learning [60, 92-97, 132, 133] becomes
a preferred approach for segmentation and classification of
medical images for real-time applications [124, 138].

Gowda and Rasheed [138] have suggested a hybrid CNN-
SVM classifier to identify cancer-cell. It is implemented in
hardware using Zync-Soc-FPGA. It is a cost-effective real-
time-system, which demonstrates superior performance [138].
Knowlton et al. [139] have proposed a novel approach to iden-
tify sickle-cell using smart-phone. Pranneerselvam has sug-
gested an efficient ARM 7 micro-controller-based embedded-
system for the diagnosis of SCD [140].

VIII. SCOPES FOR FUTURE WORK

The quality of an image can be further enhanced using more
efficient pre-processing. The segmentation of overlapping cells
can be improved by employing distance regularized level set
evolution (DRLSE), FCM or other efficient machine learning
or image processing techniques. Research can be carried out
to make feature extraction and feature selection more accurate
and more robust. Gabor filter, LBP, PCA, LDA, etc. can also be
employed for effective feature extraction and feature selection.
Classification accuracy can be further improved by boosting
the performance of ANN, SVM, RNN, CNN, etc. Moreover,
these techniques can be modified to boost the performance
of a system. The review may motivate researchers to formu-
late more efficient algorithms for enhancement, restoration,
segmentation, and classification. This may be embedded in a
suitable hardware to make a point-of-care device, operating in
real-time mode, for diagnosis and treatment planning of SCD.

IX. CONCLUSION

The contributions of this survey article are manifold. The
principal objective of the review is to give an overview of
the techniques that are available in the literature for the en-
hancement, segmentation, feature extraction and classification
of the image containing RBCs to detect sickle cell disease.
The merits and demerits of the recent methodologies are
discussed. It has an important role in diagnosis and overall
treatment planning of sickle cell disease. It may create a deeper
insight into the analysis of state-of-the-art methods. Various
performance measures like sensitivity, specificity, accuracy,
precision, F1 score, J score, and AUC are used for the
quantitative analysis of these techniques. It could be helpful to
the researchers in the comparative analysis of various methods.
The survey addressed some of the open problems faced by the
clinicians. It focusses how to handle inherent problems with
the segmentation of overlapping cells, noise removal and IIH
correction. The review also highlights hardware implementa-
tion, clinical uses and future scopes.This may help researchers
and clinicians in deciding a particular methodology, best suited
for detection and analysis of SCD.
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