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Bandgap prediction by deep learning in configurationally
hybridized graphene and boron nitride
Yuan Dong1, Chuhan Wu2, Chi Zhang1, Yingda Liu2, Jianlin Cheng2 and Jian Lin 1

It is well-known that the atomic-scale and nano-scale configuration of dopants can play a crucial role in determining the electronic
properties of materials. However, predicting such effects is challenging due to the large range of atomic configurations that are
possible. Here, we present a case study of how deep learning algorithms can enable bandgap prediction in hybridized
boron–nitrogen graphene with arbitrary supercell configurations. A material descriptor that enables correlation of structure and
bandgap was developed for convolutional neural networks. Bandgaps calculated by ab initio calculations, and corresponding
structures, were used as training datasets. The trained networks were then used to predict bandgaps of systems with various
configurations. For 4 × 4 and 5 × 5 supercells they accurately predict bandgaps, with a R2 of >90% and root-mean-square error of
~0.1 eV. The transfer learning was performed by leveraging data generated from small supercells to improve the prediction
accuracy for 6 × 6 supercells. This work will pave a route to future investigation of configurationally hybridized graphene and other
2D materials. Moreover, given the ubiquitous existence of configurations in materials, this work may stimulate interest in applying
deep learning algorithms for the configurational design of materials across different length scales.

npj Computational Materials            (2019) 5:26 ; https://doi.org/10.1038/s41524-019-0165-4

INTRODUCTION
Introduction of defects at atomic or nanoscales has been a widely
employed strategy in bulk materials, such as metals, ceramics, and
semiconductors, for manipulation of their mechanical and physical
properties. Especially when these defects are precisely controlled
in configuration space, they significantly improve the mechanical
properties,1–3 manipulate the magnetic properties,4–6 and alter
the electronic properties.7–10 For instance, nanotwined grain
boundaries are crucial to realize ultrahigh strength, superior
fatigue resistance in metals,1 and ultrahigh hardness and
enhanced toughness in ceramics.2,3 Localization of nitrogen
vacancy center at deterministic locations with nanoscale precision
within diamond improves sensitivity and resolution of single
electron spin imaging,4,5 and enhances charge-state switching
rates,6 paving new ways to next-generation quantum devices.
Precisely controlling dopant atoms in term of concentration and
spatial arrangement within semiconductors is so critical to
performance of fabricated electronic devices, especially as the
dimension of the device keeps shrinking.7 Manipulation and
detection of individual surface vacancies in a chlorine terminated
Cu (100) surface realizes atomic scale memory devices.10

Based on the aforementioned examples in the bulk materials, it
is naturally anticipated that the effect of the defects in two-
dimensional (2D) materials, in term of the defect density and
configurations, would be even more profound as all the atoms are
confined within a basal plane with atomic thickness. Distinguished
from allowance of different pathways of defect configurations in
the three-dimensional (3D) bulk materials, this dimensionality
restriction in the 2D materials largely reduces the accessibility and
variability of the defects. This uniqueness would allow

configurational design of the defects in 2D, which starts to
emerge as a new and promising research field. As the first well-
known 2D material, graphene has been shown to exhibit
configurational grain boundaries-dependent mechanical,11,12 ther-
mal,13 and electrical properties.14,15 Doping graphene with
heteroatoms, such as hydrogen, nitrogen, and boron, can further
tailor the magnetic or electrical properties.16 Theoretical calcula-
tions suggest that these properties not only depend on types of
dopants,16–18 and doping concentrations,19 but also are greatly
determined by the dopants configurations within the gra-
phene.20–22 Although the theoretical investigation already enables
to research a much larger set of cases than the experiment does.
The number of possible configurations for the dopants in
graphene far exceeds the amount that can be practically
computed due to extremely high computational cost. For
instance, hybridizing boron–nitrogen (B–N) pairs into a graphene
layer with a just 6 × 6 supercell system results in billions of
possible configuration structures. Thus, it is entirely impractical to
study all the possibilities to get the optimized properties even for
such a small system. Another limitation of current mainstream of
material design is that it heavily relies on intuition and knowledge
of human who design, implement, and characterize materials
through the trial and error processes.
Recent progress in data-driven machine learning (ML) starts to

stimulate great interests in material fields. For instance, a series of
material properties of stoichiometric inorganic crystalline materi-
als were predicted by the ML.23 In addition to their potentials in
predicting properties of the materials, they start to show great
power in assisting materials design and synthesis.24–27 It is
anticipated that ML would assist to push the material revolution
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to a paradigm of full autonomy in the next 5–10 years,28,29

especially as emerging of deep learning (DL) algorithms.30,31 For
instance, a pioneer work of employing only a few layered
convolutional neural networks (CNNs) enables to reproduce the
phase transition of matters.32 Nevertheless, the application of the
DL in the material fields is still in its infancy.33 One of main barriers
is that a compatible and sophisticated descriptive system that
enables to correlate the predicted properties to structures is
required for materials because DL algorithms are originally
developed for imaging recognition.
Motivated by this challenge, we conceive to employ CNNs,

including VGG16 convolutional network (VCN), residual convolu-
tional network (RCN), and our newly-constructed concatenate
convolutional network (CCN), for predicting electronic properties
of hybridized graphene and h-BN with randomly configured
supercells. As a benchmark comparison, the support vector
machine (SVM),34 which used to be the mainstream ML algorithm
before the DL era, was also adopted (see details in Supplementary
Note 1). We discovered that after trained with structural
information and the bandgaps calculated from ab initio density
function theory (DFT), these CNNs enabled to precisely predict the
bandgaps of hybridized graphene and boron nitride (BN) pairs
with any given configurations. One main reason for the high
prediction accuracy arises from the developed material descriptor.
Such a descriptive system enables to qualitatively and quantita-
tively capture the features of configurational states, where each
atom in the structure affects its neighbor atoms so that these
localized atomic clusters collectively determine bandgaps of the
whole structure. Combined with well-tuned hyperparameters and
well-designed descriptor, the CNNs result in high prediction
accuracy. Considering that atom-scale precise structures of doped
graphene by bottom-up chemical synthesis have been experi-
mental realized,35–37 this work provides a cornerstone for future
investigation of graphene and other 2D materials as well as their

associated properties. We believe that this work will bring up
broader interests in applying the designed descriptive system and
the CNN models for many materials related problems, which are
not accessible to other ML algorithms.

RESULTS AND DISCUSSION
Dataset for bandgaps and structures of configurationally
hybridized graphene
The generation of various configurations follows a pure geometric
way. Because graphene and h-BN have similar honeycomb
structures with very close bond lengths (1.42 Å and 1.44 Å for
graphene and h-BN, respectively),38 which is beneficial to
structural stability if B–N pairs are hybridized in graphene.
Moreover, graphene is a semimetal with a zero bandgap while
h-BN is a wide-bandgap semiconductor. Thus, it can be naturally
assumed that the graphene hybridized with the B–N pairs could
have an intermediate bandgap. Finally, the B–N pairs can exactly
make the charge neutral in the doped graphene. To test these
hypotheses, we first implemented high throughput DFT calcula-
tions on configurationally hybridized graphene to generate
datasets—correlation of supercell structures to bandgaps—for
the ML. To achieve high-throughput calculations, we only apply
non-hybrid function for the DFT calculations. Even though the
calculated bandgaps are not as accurate as the previously
reported values calculated by the hybrid functions, data
consistence can be secured. Initial calculations show that the
bandgaps of the pristine graphene with 4 × 4, 5 × 5, and 6 ×
6 supercell systems are exactly 0 eV (Fig. 1a), and the bandgap of
the pristine h-BN is 4.59 eV (Fig. 1b). More DFT calculations on
examples of 4 × 4 systems that have the 50 at% B–N concentra-
tions but with different configurational states show that they
exhibit bandgaps ranging from 0.95 to 1.57 eV (Fig. 1c). As the BN
concentration increases to 62.5 at%, the corresponding bandgaps
also increase (Fig. 1d). The band structure of 6 × 6 supercell
systems of graphene doped with 3 at% B–N concentrations (Fig.
S1) illustrates the dopant induced bands/levels. These results
validate that bandgaps of hybridized graphene depend on the
configurations. Then more bandgaps of hybrids with arbitrary
concentration and supercell configurations were calculated by the
DFT. Some of them served as the training datasets for training the
CNNs. Others served as test datasets to validate the accuracy of
the prediction performed by the CNNs.
After the bandgap matrix is generated, structural information,

such as chemical compositions and structures, needs to be well
described in a form of numerical matrixes which will serve input
data to train the CNNs. Defining descriptors of the materials for
the ML is one of main challenges because the descriptors are
more important to influence model accuracy than the ML
algorithms do.23,39 Herein, we chose a simple and illustrative
descriptor which is very suitable for the DL framework. We define
the hybridized graphene structure by a 2D matrix described with
only “0” and “1”. “0” corresponds to a C–C pair while “1”
corresponds to a B–N pair (Fig. 2a). The size of matrix is 4 × 4, 5 × 5,
and 6 × 6, the same as the size of supercells. This natural
representation like a 2D image significantly simplifies the learning
process, securing the model accuracy. Note that we exclude the
cases of switching configurations of B–N pairs, which will add
more complexity to the investigated systems. The size of a matrix
is determined by the size of a supercell in an investigated system.
For instance, a 4 × 4 system was represented by a 4 × 4 matrix. In
this work, 4 × 4, 5 × 5, and 6 × 6 systems were studied. To enlarge
the training dataset, the equivalent structures were obtained by
translating the particular structures along their lattice axis or
inversion around their symmetry axis (Fig. S2). These structures are
equivalent, thus having the same bandgaps. By this way, ~14,000,
~49,000, and ~7200 data examples for the 4 × 4, 5 × 5, and 6 ×

Fig. 1 a, b Band structures of pristine graphene a and pristine h-BN
b. c, d Representative atomic configurations of 4 × 4 graphene
supercell systems that have the same B-N dopant concentrations
(50% and 62.5%) but with different configurational states and their
corresponding bandgaps. C, N, B atoms are colored with black, blue,
and red
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6 supercell systems, respectively, were generated for purposes of
training and validating CNNs. These datasets cover 21.36%, 0.15%,
and 1 × 10–7 of all possible configurations for the 4 × 4, 5 × 5, and
6 × 6 supercell systems, respectively. These datasets were split into
the training and test datasets, respectively. For example, when
investigating 4 × 4 supercell systems, we randomly chose 13,000
and 1000 different data points from all the data samples as the
training and validation datasets, respectively, to train and validate
the CNN models. Correspondingly, for 5 × 5 supercell systems, the
training and validation datasets are 48,000 and 1000, respectively.
For 6 × 6 supercell systems, the training and validation datasets
are 6200 and 1000, respectively.

Construction of CNNs
The general procedure of setting up the CNNs is illustrated as
follows. The structural information of the hybridized graphene/BN
sheets is represented by input matrices. The input matrices are
transformed into multiple feature maps by filters in the first
convolutional layer. The output of the convolutional layer is
further transformed into high-level feature maps by the next
convolutional layer. The maximum value of each feature map of
the last convolutional layer is pooled together by the max pooling,
which is used as the input of the next three fully-connected layers
(FC). The single node in the output layer takes the output of the
last FC layer as input to predict the bandgaps. The CNNs used in
this work were constructed into three different structures. Firstly,
we constructed a network which is similar to the traditional VCN
designed for image processing,40 as shown in Fig. 2b. This network
has 12 convolutional (Conv) layers, one global-flatten layer, three
FC layers, and an output layer. The neural layers in VCN are

explained in Supplementary Note 2. The detailed hyperparameters
are given in Table S1.
Although the VCN is capable of learning from the data, our

prediction results show that its performance is limited by the
depth of neurons. The accuracy gets saturated and degraded
rapidly. To tackle this problem, we further constructed the other
two neural networks, RCN and CCN. The construction of RCN is
explained in Supplementary Note 3. Its structure and hyperpara-
meters are shown in Fig. S3 and Table S2–S4. The structure of RCN
that we used is similar to that of ResNet50 network, but the Max-
Pooling layer was replaced with a Global Max pooling layer. The
ResNet is a recent popular option in image classification.41 A
characteristic of this network is that the convolution layers in VCN
are replaced with residual blocks. This design can prevent the
degeneration when the network goes deeper. The block in the
CCN is our newly-constructed network which combines advan-
tages of both GoogleNet42 and DenseNet.43 The structure and
hyperparameters of this network is explained in Supplementary
Note 4 and illustrated in Fig. S4a and Table S5-S6. Similar to RCN,
we also introduce the concatenation blocks into CCN as the
building blocks (Fig. S4b and Table S6). Unlike RCN which “adds”
feature maps in element-wise, CCN concatenates the layers from
input and output data by simultaneously passing them through
the activation layer. The concatenation of the network can also
prevent it from degradation which is usually existing in the VCN.
The concatenation can keep more extracted features in previous
neuron layers, which would be beneficial to the transfer learning
(TL). After the networks were built, they were trained by the
generated datasets which correlate the structural information of
the hybridized graphene with their corresponding bandgaps.
After the CNNs were trained, 300 new datasets that illustrate 300

Fig. 2 a Descriptors for 2D doped graphene supercell systems (4 × 4, 5 × 5, and 6 × 6 systems). b A convolutional neural network, VCN, for the
prediction of bandgaps of 2D doped graphene systems
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types of the hybridized graphene structures for each type of
investigated supercell systems (4 × 4, 5 × 5, and 6 × 6) were fed
into the trained CNNs to predict the bandgaps. Note that these
used structures do not exist in ones used for training and
validation. The predicted bandgaps were compared to the values
calculated by the DFT on the same structures for evaluating the
prediction accuracy of the DL algorithms.

Prediction of bandgaps by CNNs
As shown in Fig. 1, we can conclude that the bandgaps of the
hybridized graphene are influenced by both the dopants and their
configurations. In other words, each atom in the structure affects
its neighbor atoms so that these localized atomic clusters
collectively determine bandgaps of the whole structure. As
convolutions in the CNNs can extract the features not only from
the elements of the input data but also from their neighbors, it
qualitatively and quantitatively captures the features of config-
urationally hybridized graphene, which will be proved as follows.
The predicted bandgaps of the 4 × 4 and 5 × 5 supercell systems
by different DL algorithms are compared with the results by the

DFT calculations (Fig. 3). Note that these data is obtained from the
method of “learning from scratch” which suggests that the
training and prediction are performed under the same graphene-
h-BN hybrid systems.44 For instance, the networks which are
trained using the data from the 4 × 4 supercell systems are used to
predict the systems with the same size but different configura-
tions. The prediction accuracy is characterized by the relative error
of the predicted bandgaps (EML) to the DFT calculated bandgaps
(EDFT), which is calculated as |EML−EDFT|/EDFT. As shown in Fig. 3a,
all of three CNNs can predict the bandgaps of 4 × 4 supercell
systems within 10% relative error for >90% cases. All of the
predicted bandgaps for all cases have accuracy of >80%. In
contrast, the prediction results from the SVM are deviated much
more from the DFT benchmarks, showing >20% error for >50%
cases. Figure 3b shows that the three CNNs exhibit strong direct
linear correlation of ML predicted values and the DFT calculated
values, while the SVM shows very weak correlation. The prediction
accuracy of these CNNs for 5 × 5 supercell systems degrades a
little (Fig. 3c). But the VCN network shows the prediction accuracy
of >90% for >90% cases, which is the best among all three CNNs.
The CCN has the lowest with prediction accuracy of >90% for only
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~50% cases. That is possible due to lack of training data for 5 ×
5 supercell systems considering their much larger configuration
space than 4 × 4 supercell systems. The ML predicted bandgaps
still have strong linear correlation with the DFT calculated ones
(Fig. 3d). We believe that as the size of training datasets increases,
the accuracy would be further improved. Similar to the prediction
results shown for 4 × 4 supercell systems, when predicting
bandgaps of 5 × 5 supercell systems the SVM shows poor
performance (Fig. 3b, d).
In addition, other indicators of the prediction performance—the

mean absolute error (MAE), root-mean-square error (RMSE) and
explained variance (R2)—are provided in Table 1. Meanwhile, the
fractional error, MAEF and RMSEF were also calculated, with their
definition is shown in Supplementary Notes 5. For the 4 ×
4 supercell systems, all three CNNs show very low RMSE of ~0.1 eV
for the predicted bandgaps. The corresponding fractional errors,
RMSEF, for all three CNNs are ~6%. For the 5 × 5 supercell systems,
the RMSE values slightly increase to 0.16 eV for the CCN, but it
decreases to 0.09 eV and 0.10 eV when predicted by the VCN and
RCN, further confirming the effectiveness of the VCN in predicting
larger systems. The performance is also compared with different
concentrations of BN pairs in the 5 × 5 supercell systems. Table S7
shows the statistics of prediction accuracy at three different levels
of BN concentrations (<33 at%: “Low Concentration”; 33 at% ~ 66
at%: “Medium Concentration”; >66 at%: “High Concentration”).
Compared with the results listed in Table 1, the accuracy doesn’t
change much, indicating the robustness of the CNN models in
predicting the bandgaps of the structures with different BN
concentrations.
The ultralow RMSE and RMSEF values show that these DL

algorithms are more effective in predicting bandgaps of our
system than other material systems, such as double perovskites39

which show a RMSE of 0.36 eV or inorganic crystals which show a
RMSE of 0.51 eV.23 This advantage is even more compelling if
considering that: (i) our performance is rigorously evaluated with
the newly generated systems that don’t have any translational or
symmetry equivalence with the training ones; (ii) the error
maintains a low level when the relative size of the training data
is significantly reduced for the 5 × 5 supercell systems. In contrast,
the prediction accuracy from the SVM algorithm is lower, showing
higher RMSEs of 0.33 and 0.51 eV for the 4 × 4 and 5 × 5 supercell
systems, respectively. The R2 is an indicator of correlation between
the prediction and real values, which is considered as one of the
most important metrics for evaluating the accuracy of the
prediction models. Table 1 illustrates that the predicted bandgaps
by all three CNNs have ~95% and >90% relevance to the values
calculated by the DFT for the 4 × 4 and 5 × 5 supercell systems,
respectively. Among them, the RCN shows the best prediction
results. In contrast, the SVM has a near zero R2, indicating almost

no relevance between the two. In summary, these results show
that the CNNs are superior to non-CNN ML algorithms in
predicting bandgaps of the configurationally hybridized gra-
phene. People generally agree that the CNN methods perform
better than non-CNN ones in terms of feature extraction for
problems involving spatial structures. This advantage could be
attributed to the convolution processing of data in CNNs.45–47 The
flattening process of SVM method could lost important spatial
features which are deterministic to bandgaps. Therefore, our
results presented in this work provide another example for the
effectiveness of CNNs dealing with spatial problems in material
science.

Transfer learning: training and prediction
As suggested from the prediction results shown in the 4 × 4 and
5 × 5 supercell systems, the prediction accuracy is decreased as
the relative size of training data shrinks. Obtaining sufficient
training data, such as bandgaps calculated by the DFT, can lead to
unusually high cost especially as the system scales up. Such a
problem imposes a major challenge in the application of ML to the
materials science. To overcome this challenge, an emerging TL has
been proposed.48 To conceptually validate the effectiveness of the
TL in predicting bandgaps of larger systems we leveraged
relatively larger datasets generated from the 4 × 4 and 5 ×
5 supercell systems to improve models trained on more limited
datasets generated in the 6 × 6 supercell systems. To do that, we
built TL frameworks based on the CCN, RCN, and VCN. These
networks were trained with the datasets previously used for
training the 4 × 4 and 5 × 5 supercell systems together with 7200
new data points generated from the 6 × 6 supercell systems. The
TL procedures for all CNNs are similar to the ones shown in
refs. 49,50 where all CNNs layers except the last FL are set at a
learning rate 10% of the original learning rate. The last layer is re-
normalized and trained with the new dataset. Its learning rate is
set to 1% of the original CNN networks.
Figure 4a shows prediction errors of bandgaps for the 6 ×

6 supercell systems by all three DL algorithms without the TL.
Compared with the 4 × 4 and 5 × 5 systems they are significantly
increased in all three categories of the prediction errors. The VCN
shows >90% prediction accuracy for only ~40% cases. The RCN
performs the best among all three ones with near 55% cases
reaching > 90% accuracy. The CCN shows the lowest percentage
(i.e., ~45%) of cases within 10% prediction error and has 15% of
the cases with >20% error. Figure 4b shows that the correlation
between the predicted bandgaps and the DFT calculated ones is
weaker for all three CNNs compared with the smaller systems, due
to the much smaller percentage of sample size (only 1 × 10–7 of all
possibilities). The prediction accuracy can be notably boosted after
they are combined the TL (Fig. 4c). The CCN with the TL performs
the best, with >60% cases achieving >90% accuracy. The
percentage of cases with >20% error reduces to <10% from
20%. It is a significant improvement considering that increasing
prediction accuracy becomes more and more difficult after a
certain point. With the TL, the RCN and VCN also shows improved
prediction accuracy. The percentage of the cases that show >20%
error decreases from 20 to 8% when using the RCN, while VCN
decrease percentage of cases from 35 to 12%. The correlation
between the predicted bandgaps and the DFT calculated ones
becomes much stronger after using the TL methods (Fig. 4d). The
statistics of the predicted bandgaps by the different DL algorithms
with and without the TL for the 6 × 6 supercell systems is shown in
Table 2. Overall, the TL boosts the prediction accuracy of all three
DL algorithms in terms of reducing the MAE and RMSE. For
instance, it helps to reduce the MAE of CCN from 0.13to 0.09 eV
and RMSE from 0.16 to 0.12 eV. Their RMSEF values are also
reduced. This accuracy is comparable to the prediction accuracy
show in the 5 × 5 supercell systems with the same DL algorithms.

Table 1. Statistics of predicted bandgaps by ML algorithms for 4 × 4
and 5 × 5 supercell systems

MAE (eV) MAEF RMSE (eV) RMSEF R2

4 × 4 systems

VCN 0.08 5.34% 0.10 6.47% 0.9483

RCN 0.08 5.12% 0.11 6.44% 0.9426

CCN 0.07 4.59% 0.09 5.83% 0.9547

SVM 0.40 27.6% 0.33 34.7% 0.0029

5 × 5 systems

VCN 0.07 5.72% 0.09 7.57% 0.9212

RCN 0.08 6.39% 0.10 8.33% 0.9124

CCN 0.15 13.3% 0.16 15.7% 0.9285

SVM 0.27 22.8% 0.51 29.5% 0.0032
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They are the lowest among the values predicted by all three CNNs
used in this work. This demonstration of applying the TL to predict
bandgaps of the configurationally hybridized graphene of larger
size would pave new route to mitigating barriers for the ML in
solving challenges of data scarcity faced in the material fields.
In summary, we develop the DL models to predict the

bandgaps of hybrids of graphene and h-BN with arbitrary
supercell configurations. Three CNNs yield high prediction
accuracy (>90%) for 4 × 4 and 5 × 5 supercell systems. The CNNs
show superior performance to the non-CNN ML algorithms. The
TL, leveraging the pre-trained network on small systems, boosts
the prediction accuracy of three CNNs when predicting the
bandgaps of large systems. The resulting MSE and RMSE of the
predicted bandgaps of 6 × 6 systems by the CCN can be close to
those of the 5 × 5 systems, but with a much smaller sampling ratio.
Through this scientifically significant example, we have success-
fully illustrated the potential of artificial intelligence in studying 2D
materials with various configurations, which would pave a new
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Fig. 4 Prediction performance of three DL algorithms a, b before and c, d after transfer learning for 6 × 6 supercell systems. a, c Error levels of
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prediction errors of <10%, <20%, and >20%. b, d ML predicted bandgaps vs. DFT calculated values before TL b and after TL d

Table 2. Statistics of predicted bandgaps by different DL algorithms
without and with transfer learning for 6 × 6 supercell systems

MAE (eV) MAEF RMSE (eV) RMSEF R2

Without transfer learning

VCN 0.15 15.7% 0.18 20.6% 0.5390

RCN 0.12 13.6% 0.15 19.4% 0.5243

CCN 0.13 14.5% 0.16 19.8% 0.5771

With transfer learning

VCN 0.11 11.3% 0.14 15.5% 0.5958

RCN 0.10 10.2% 0.12 15.0% 0.6525

CCN 0.09 9.60% 0.12 12.6% 0.6642
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route to rational design of materials. Given the recent progress in
atom-scale precise structures of 2D materials realized by bottom-
up chemical synthesis, we anticipate that our methods could form
a computational platform that enables to pre-screen candidates
for experimental realization. Moreover, due to the extremely high
computation cost from the DFT calculation for larger systems,51

this platform could be useful to extrapolate the results obtained
from smaller systems to larger systems with assistance of the TL
algorithm. Upon the success of CNNs in present material systems,
we envision that they could be extendable to 2D material systems
with different number of layers considering that the CNN models
are also effective in RGB images classification by preprocessing the
images into multiple 2D numerical matrices.52 In this case, the
images can be encoded to 2D numerical matrices and then fed
into the CNN models. Nevertheless, this hypothesis requires
careful investigation due to layer-to-layer interaction resulted
physical and chemical complexity. Nevertheless, we believe that
current work will inspire researchers in 2D materials for further
exploring this promising area.

METHODS
DFT calculation
The ab initio DFT calculations were performed by QUANTUM ESPRESSO
package.53 We have successfully employed DFT calculations to investigate
the nitrogen doping in graphene and to predict a class of novel two-
dimensional carbon nitrides.54,55 The ultra-soft projector-augmented wave
(PAW) pseudopotential56 was used to describe the interaction between the
valence electrons and the ions. The Perdew-Burke-Ernzenhof (PBE)
function was applied for the exchange-correlation energy.57 The cutoff
plane wave energy was set to 400 eV. The Monkhorst-Pack scheme58 was
applied to sample the Brillouin zone with a mesh grid from 12 × 12 × 1 in
the k-point for all the systems. The graphene sheets were modeled as 2D
matrixes. The matrix with all zero represents the intrinsic graphene, and
the matrix with all one represents the intrinsic h-BN. The hybridized
graphene and h-BN sheets were modeled by matrixes with 0 and 1
elements. The sizes of computed 2D sheets were 4 × 4, 5 × 5, and 6 ×
6 supercells. The output training datasets were the bandgaps of randomly
generated 2D graphene and BN hybrids with random concentration of BN
pairs varying from 0 to 100 at% (Fig. S5). Specifically, the configurations
were generated by random sampling. For example, for the 4 × 4 systems,
we generated a set of random decimal numbers between 0 and216. Then
these decimal numbers were converted into binary numbers that were
represented with 16 digits. These digits were further converted to 4 by 4
matrixes to represent samples showing various configurations.
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