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Abstract 

Automatic classification of environmental sounds, such as dog barking and glass breaking, is becoming increasingly interesting, 
especially for mobile devices. Most mobile devices contain both cameras and microphones, and companies that develop mobile 
devices would like to provide functionality for classifying both videos/images and sounds. In order to reduce the development costs 
one would like to use the same technology for both of these classification tasks. One way of achieving this is to represent 
environmental sounds as images, and use an image classification neural network when classifying images as well as sounds. In this 
paper we consider the classification accuracy for different image representations (Spectrogram, MFCC, and CRP) of environmental 
sounds. We evaluate the accuracy for environmental sounds in three publicly available datasets, using two well-known 
convolutional deep neural networks for image recognition (AlexNet and GoogLeNet). Our experiments show that we obtain good 
classification accuracy for the three datasets. 
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1. Introduction 

Automated classification of environmental sounds, like dog barking and siren, can be used in applications such 
as remote surveillance and home automation. An interesting application is the use of home monitoring equipment 
which identifies different sounds produced in a domestic/interior environment and alerts the user accordingly. 
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Examples of such sounds are baby crying, air conditioner, and glass breaking. The recognition of such domestic 
sounds, if implemented on a mobile device, can lead to new and important applications. 

Environmental sounds consist of various non-human sounds (excluding music) in normal day-to-day life. During 
the past few years, many attempts to recognize environmental sounds have been made. Presently, there is an increasing 
focus on classifying environmental sounds using deep learning techniques1,2,3,4,5; the improvements in the field of 
image classification in recent years are leading researchers to start using images when classifying sounds.  

The important difference between speech/music and environmental sound is that the former are strongly 
structured and clearly demarcated whereas the latter have no common structure6. This causes it to be a whole new 
problem. There is possibly an elegant solution in deep learning since deep neural networks have been proven to be 
able to handle vast amounts of data and model complex features due to advances in computing power, including the 
more general use of GPUs.   

Wang et al7 discuss the efficiency of Gabor-based non uniform scale frequency map that combines Principle 
Component Analysis and Linear Discriminate Analysis to extract features from the sound samples followed by 
classification using Support Vector Machines (SVMs); a high classification accuracy was reported. Lu et al8 conclude 
that SVM provides more accurate classification of environmental sounds than k-Nearest Neighbor (kNN) and 
Gaussian Mixture Model (GMM).  

The most common deep learning based approach for classification of sounds is to convert the audio file to an 
image, and then use a neural network to process the image. Mostafa et al9 perform classification of music using 
Probabilistic Neural Network with satisfactory results. Most sound classification approaches use supervised pattern 
recognition. However, Zhang and Schuller10 voice the problem that manual labelling of datasets is very costly and 
they recommend semi-supervised learning as a better solution. McLoughlin et al6 state that classification of sound in 
realistic noisy environments is challenging and propose a deep neural network as a viable solution. Piczak11 and Zhang 
et al1 both convey the idea that convolutional neural networks have the best accuracy rates on Spectrogram analysis. 

As summarized by Chachada et al5 there are three broad ways of processing environmental sounds for 
classification purposes: 1) Framing-based where the audio signals are separated into frames using a Hamming window. 
Then the features are extracted from each frame and classified separately. 2) Sub-framing based processing where the 
frames are further subdivided and each frame is classified based on the majority voting of the sub-frames. 3) Sequential 
processing where the audio signals are divided into segments of typically 30 ms with 50% overlap. The classifier then 
classifies the features extracted from these segments.  

The use of mobile devices is ubiquitous, and there are a number of applications that would benefit from being 
able to identify both sounds and objects. Previous studies12 have shown that, for environmental sound classification, 
the ratio (classification performance)/(computational cost) is more favourable for deep neural networks compared to  
both Gaussian Mixture Models (GMM) and  Support Vector machines (SVM). Since this ratio is particularly important 
on mobile devices with limited processing and battery capacity, evaluating deep neural networks for sound (and 
image) classification on mobile devices is very relevant. As discussed above, sound classification often uses images 
in the form of Spectrograms etc. However, many of the deep learning networks used for such classification are 
designed specifically for Spectrograms and other visual representations of sound, and the images they use are often 
extremely rectangular (e.g., 96 x 1366 pixels13). Such image recognition networks cannot be effectively used for 
normal image recognition, e.g., when identifying different objects in pictures or videos taken by the camera in the 
mobile device. Most mobile devices will have image recognition of normal (almost) quadratic pictures, and the 
developers of such devices will use a deep learning image recognition network designed for that purpose, e.g., 
AlexNet14 and GoogLeNet15. Using the same image recognition network also for classifying environmental sounds 
would have a number of practical advantages, such as reuse of software and not having to maintain competence in the 
tuning of different kinds of learning networks. However, there is a research gap concerning the performance and 
usefulness of deep neural networks, designed for normal object recognition, when it comes to classify Spectrograms 
and similar sound related images. The aim of this study is to explore that research gap, and see if the same deep neural 
network can be used for classification of images as well as for environmental sounds. 

The rest of this paper is structured in the following way. Section 2 describes the datasets used, and Section 3 the 
method used in our experiments. The results from the experiments are presented in Section 4. Section 5 compares our 
results with other studies and discusses practical aspects. The conclusions from our study are presented in Section 6. 
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Examples of such sounds are baby crying, air conditioner, and glass breaking. The recognition of such domestic 
sounds, if implemented on a mobile device, can lead to new and important applications. 

Environmental sounds consist of various non-human sounds (excluding music) in normal day-to-day life. During 
the past few years, many attempts to recognize environmental sounds have been made. Presently, there is an increasing 
focus on classifying environmental sounds using deep learning techniques1,2,3,4,5; the improvements in the field of 
image classification in recent years are leading researchers to start using images when classifying sounds.  

The important difference between speech/music and environmental sound is that the former are strongly 
structured and clearly demarcated whereas the latter have no common structure6. This causes it to be a whole new 
problem. There is possibly an elegant solution in deep learning since deep neural networks have been proven to be 
able to handle vast amounts of data and model complex features due to advances in computing power, including the 
more general use of GPUs.   

Wang et al7 discuss the efficiency of Gabor-based non uniform scale frequency map that combines Principle 
Component Analysis and Linear Discriminate Analysis to extract features from the sound samples followed by 
classification using Support Vector Machines (SVMs); a high classification accuracy was reported. Lu et al8 conclude 
that SVM provides more accurate classification of environmental sounds than k-Nearest Neighbor (kNN) and 
Gaussian Mixture Model (GMM).  

The most common deep learning based approach for classification of sounds is to convert the audio file to an 
image, and then use a neural network to process the image. Mostafa et al9 perform classification of music using 
Probabilistic Neural Network with satisfactory results. Most sound classification approaches use supervised pattern 
recognition. However, Zhang and Schuller10 voice the problem that manual labelling of datasets is very costly and 
they recommend semi-supervised learning as a better solution. McLoughlin et al6 state that classification of sound in 
realistic noisy environments is challenging and propose a deep neural network as a viable solution. Piczak11 and Zhang 
et al1 both convey the idea that convolutional neural networks have the best accuracy rates on Spectrogram analysis. 

As summarized by Chachada et al5 there are three broad ways of processing environmental sounds for 
classification purposes: 1) Framing-based where the audio signals are separated into frames using a Hamming window. 
Then the features are extracted from each frame and classified separately. 2) Sub-framing based processing where the 
frames are further subdivided and each frame is classified based on the majority voting of the sub-frames. 3) Sequential 
processing where the audio signals are divided into segments of typically 30 ms with 50% overlap. The classifier then 
classifies the features extracted from these segments.  

The use of mobile devices is ubiquitous, and there are a number of applications that would benefit from being 
able to identify both sounds and objects. Previous studies12 have shown that, for environmental sound classification, 
the ratio (classification performance)/(computational cost) is more favourable for deep neural networks compared to  
both Gaussian Mixture Models (GMM) and  Support Vector machines (SVM). Since this ratio is particularly important 
on mobile devices with limited processing and battery capacity, evaluating deep neural networks for sound (and 
image) classification on mobile devices is very relevant. As discussed above, sound classification often uses images 
in the form of Spectrograms etc. However, many of the deep learning networks used for such classification are 
designed specifically for Spectrograms and other visual representations of sound, and the images they use are often 
extremely rectangular (e.g., 96 x 1366 pixels13). Such image recognition networks cannot be effectively used for 
normal image recognition, e.g., when identifying different objects in pictures or videos taken by the camera in the 
mobile device. Most mobile devices will have image recognition of normal (almost) quadratic pictures, and the 
developers of such devices will use a deep learning image recognition network designed for that purpose, e.g., 
AlexNet14 and GoogLeNet15. Using the same image recognition network also for classifying environmental sounds 
would have a number of practical advantages, such as reuse of software and not having to maintain competence in the 
tuning of different kinds of learning networks. However, there is a research gap concerning the performance and 
usefulness of deep neural networks, designed for normal object recognition, when it comes to classify Spectrograms 
and similar sound related images. The aim of this study is to explore that research gap, and see if the same deep neural 
network can be used for classification of images as well as for environmental sounds. 

The rest of this paper is structured in the following way. Section 2 describes the datasets used, and Section 3 the 
method used in our experiments. The results from the experiments are presented in Section 4. Section 5 compares our 
results with other studies and discusses practical aspects. The conclusions from our study are presented in Section 6. 
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2. Datasets 

Three publicly available datasets were selected for evaluation of the models: ESC-5016, ESC-1016 and 
UrbanSound8K17. 

The ESC-50 dataset is a collection of 2000 short (5 seconds) environmental recordings comprising 50 equally sized 
classes of sound events in 5 major groups (animals, natural soundscapes and water sounds, human non-speech sounds, 
interior/domestic sounds, and exterior/urban noises) prearranged into 5 folds for cross-validation. ESC-10 is a less 
complex standardized subset with 10 equally sized classes (400 recordings) selected from the ESC-50 dataset (dog 
bark, rain, sea waves, baby cry, clock tick, person sneeze, helicopter, chainsaw, rooster, fire crackling). 
UrbanSound8K is a collection of 8732 short (less than 4 seconds) excerpts of various urban sound sources (air 
conditioner, car horn, playing children, dog bark, drilling, engine idling, gun shot, jackhammer, siren, street music) 
prearranged into 10 folds. 

Since the size of the ESC datasets is too small to use for deep learning, modifications were made to the original 
data in the form of time-stretching. Piczak11 expanded the training sound samples by adding random delays and class 
dependent time stretching to the original recordings. In that study, the number of variations of each sound file in the 
original dataset were 10 and 4 for the ESC-10 and ESC-50 datasets, respectively. We have used a similar approach, 
and for ESC-10 and ESC-50 each original audio file was used to produced six additional audio files with varying 
degrees of time-stretching applied. The signal processing toolbox in Matlab provides a function that resamples an 
audio file with a new sampling interval which is a factor of the original one. A factor larger than one speeds up the 
audio and decreases the length of the audio. We used the factors: 0.6, 0.75, 0.9, 1.1, 1.25 and 1.4. As a result, there 
are seven times as many audio files in the expanded datasets. 

3. Method 

3.1. Experimental setup 

We used a desktop PC with 12 GB RAM, an Intel Core i7-960 (8 cores @3.20 GHz), and NVIDIA GeForce GTX 
970 in the experiments. The PC was running Ubuntu 14.04 LTS, and we used Anaconda Python, and the deep learning 
frameworks Caffe, TensorFlow (with Keras), and the NVIDIA Deep Learning GPU training system (DIGITS). 

The main idea in this paper is to investigate how well sounds can be classified using deep learning networks 
designed for normal object recognition in images. Audio can be represented in the form of visual images by converting 
it into Spectrogram, Mel-Frequency Cepstral Coefficients (MFCC), and Cross Recurrence Plot (CRP). Spectrogram 
is a representation of the energy in the spectrum of frequencies, of a sound, that varies with time. MFCC is a non-
linear representation of the power spectrum of a sound adjusted to log scale. A CRP is a matrix visualization where 
each element represents the distance between the phase trajectories of a time series, such as an audio sample.  

The input audio file is converted into a monophonic signal by adding together half the signal amplitudes of each 
channel in case it is stereophonic. The extraction of Spectrogram was done using in-built function of Matlab. MFCC 
was extracted using proprietary Matlab code, and CRP was extracted using the CRP toolbox in Matlab.  

 

            
   (a)         (b)         (c) 

Fig. 1. The three types of extracted features (a) Spectrogram, (b) MFCC and (c) CRP of a single sound sample are shown. 
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The classification accuracy on the test set is chosen as the evaluation metric. The two main test sets, i.e., ESC-10 
and ESC-50 are balanced with 40 sound files in each class, and the cost of a misclassification is assumed to be the 
same for all classes; in these cases accuracy captures the most relevant classification aspects. We used 5-fold cross 
validation, i.e., the deep network is trained on the training subset of the dataset, and the trained model is then used to 
predict the samples in the test subset of the dataset according to the 5-fold cross validation method.  

We used two well-known deep learning image recognition networks: AlexNet and GoogLeNet. Both of these 
networks have competed successfully in the ImageNet Challenge (http://image-net.org/challenges/LSVRC/). Our 
implementations can be found on https://github.com/bkasvenkatesh/Classifying-Environmental-Sounds-with-Image-
Networks.   

As a baseline approach the feature extraction parameters and the network hyper-parameters were all initialized to 
the following common values: sampling rate: 32 kHz, frame length: 30ms, frame overlap percentage: 50%, training 
period: 50 epochs, base learning rate: 0.01, solver type: Stochastic Gradient Descent, learning rate change policy: 
Exponential decay, and gamma: 0.95. The size of the input image is 256 x 256 pixels with three color channels (RGB). 

3.2. Experiment 

3.2.1. Initial experiment 
 

Recurrence plots (like CRP) have been used for classifying musical instrument sound18, but not for classifying 
environmental sounds. Consequently, we expected that Spectrograms and MFCC were better at classifying 
environmental sounds than CRP images, but we were not sure. We therefore started by comparing the accuracy using 
Spectrograms, MFCC, and CPR images for the ESC-50 and ESC-10 datasets. 

Unlike Spectrogram and MFCC images, which have many similarities, a CRP image is a totally different concept. 
The CRP toolbox for Matlab was used to generate the CRP images from the expanded ESC-50 and ESC-10 sound 
datasets. Computing the recurrence plot is a more complex and hence more time-taking process when compared to 
Spectrogram and MFCC generation.  Hence it is suitable for shorter time series than the 5 seconds audio files in the 
datasets. In the initial trials of producing the recurrence plots for single audio clips it was observed that a 5 seconds 
clip took more than a day to process. However, a down-sampled (22.05 kHz) clip of less than 0.7 seconds length took 
around 3 seconds to process. The short clip had 15000 samples and, as a consequence, the resulting recurrence plot 
image had a resolution of 15000 x 15000 pixels.  

If an even shorter clip having 256 samples were to be used to produce a plot image of size 256 x 256 then there 
would have been a major loss in the audio signal information. Hence it was decided that a short down-sampled audio 
clip containing 15000 samples was a reasonable compromise between audio information and computation time.   

In order to reduce a 5 seconds sound clips from the dataset to the size required to generate a CRP image, we used 
an audio event extraction technique similar to the one used by Zhang et al1, where three high energy frames in the 
spectrogram are recognized and joined together to create an event-only clip. In our case, however, the five highest 
energy sound sample points are identified and a window of 3000 samples around each of the five high points is 
extracted from the clip and joined together creating a clip containing 15000 samples which is then used to produce 
the recurrence plot. The resulting images 15000 x 15000 images were then scaled down to the appropriate size of 256 
x 256 using standard image compression. In this way the CRP image dataset is created and used to train the networks. 

These initial results showed, that the accuracy using CRP was very low (see details in Section 4). Because of this 
we did not use CRP images in our main experiment described below, i.e., only Spectrograms and MFCC images were 
used in the main experiment. 

3.2.2. Main experiment 
 

The main experiment consisted of two steps. First, we investigated how the sampling rate of the audio files 
affected the classification accuracy. We considered three different sampling rates: 8 kHz, 16 kHz, and 32 kHz. This 
means that compared to 32 kHz, the high frequencies were filtered out in the case of 8 kHz and 16 kHz. Using Matlab, 
we obtained the corresponding Spectrogram and MFCC images for all the sound files in the (seven times expanded) 
ESC-50 and ESC-10 datasets. Based on these images, the classification accuracy for AlexNet and GoogLeNet were 
evaluated using 5-fold cross validation. We measured the average accuracy and the standard deviation for the five 
folds. 
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2. Datasets 

Three publicly available datasets were selected for evaluation of the models: ESC-5016, ESC-1016 and 
UrbanSound8K17. 

The ESC-50 dataset is a collection of 2000 short (5 seconds) environmental recordings comprising 50 equally sized 
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original dataset were 10 and 4 for the ESC-10 and ESC-50 datasets, respectively. We have used a similar approach, 
and for ESC-10 and ESC-50 each original audio file was used to produced six additional audio files with varying 
degrees of time-stretching applied. The signal processing toolbox in Matlab provides a function that resamples an 
audio file with a new sampling interval which is a factor of the original one. A factor larger than one speeds up the 
audio and decreases the length of the audio. We used the factors: 0.6, 0.75, 0.9, 1.1, 1.25 and 1.4. As a result, there 
are seven times as many audio files in the expanded datasets. 

3. Method 

3.1. Experimental setup 

We used a desktop PC with 12 GB RAM, an Intel Core i7-960 (8 cores @3.20 GHz), and NVIDIA GeForce GTX 
970 in the experiments. The PC was running Ubuntu 14.04 LTS, and we used Anaconda Python, and the deep learning 
frameworks Caffe, TensorFlow (with Keras), and the NVIDIA Deep Learning GPU training system (DIGITS). 

The main idea in this paper is to investigate how well sounds can be classified using deep learning networks 
designed for normal object recognition in images. Audio can be represented in the form of visual images by converting 
it into Spectrogram, Mel-Frequency Cepstral Coefficients (MFCC), and Cross Recurrence Plot (CRP). Spectrogram 
is a representation of the energy in the spectrum of frequencies, of a sound, that varies with time. MFCC is a non-
linear representation of the power spectrum of a sound adjusted to log scale. A CRP is a matrix visualization where 
each element represents the distance between the phase trajectories of a time series, such as an audio sample.  

The input audio file is converted into a monophonic signal by adding together half the signal amplitudes of each 
channel in case it is stereophonic. The extraction of Spectrogram was done using in-built function of Matlab. MFCC 
was extracted using proprietary Matlab code, and CRP was extracted using the CRP toolbox in Matlab.  

 

            
   (a)         (b)         (c) 

Fig. 1. The three types of extracted features (a) Spectrogram, (b) MFCC and (c) CRP of a single sound sample are shown. 
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The classification accuracy on the test set is chosen as the evaluation metric. The two main test sets, i.e., ESC-10 
and ESC-50 are balanced with 40 sound files in each class, and the cost of a misclassification is assumed to be the 
same for all classes; in these cases accuracy captures the most relevant classification aspects. We used 5-fold cross 
validation, i.e., the deep network is trained on the training subset of the dataset, and the trained model is then used to 
predict the samples in the test subset of the dataset according to the 5-fold cross validation method.  

We used two well-known deep learning image recognition networks: AlexNet and GoogLeNet. Both of these 
networks have competed successfully in the ImageNet Challenge (http://image-net.org/challenges/LSVRC/). Our 
implementations can be found on https://github.com/bkasvenkatesh/Classifying-Environmental-Sounds-with-Image-
Networks.   

As a baseline approach the feature extraction parameters and the network hyper-parameters were all initialized to 
the following common values: sampling rate: 32 kHz, frame length: 30ms, frame overlap percentage: 50%, training 
period: 50 epochs, base learning rate: 0.01, solver type: Stochastic Gradient Descent, learning rate change policy: 
Exponential decay, and gamma: 0.95. The size of the input image is 256 x 256 pixels with three color channels (RGB). 

3.2. Experiment 

3.2.1. Initial experiment 
 

Recurrence plots (like CRP) have been used for classifying musical instrument sound18, but not for classifying 
environmental sounds. Consequently, we expected that Spectrograms and MFCC were better at classifying 
environmental sounds than CRP images, but we were not sure. We therefore started by comparing the accuracy using 
Spectrograms, MFCC, and CPR images for the ESC-50 and ESC-10 datasets. 

Unlike Spectrogram and MFCC images, which have many similarities, a CRP image is a totally different concept. 
The CRP toolbox for Matlab was used to generate the CRP images from the expanded ESC-50 and ESC-10 sound 
datasets. Computing the recurrence plot is a more complex and hence more time-taking process when compared to 
Spectrogram and MFCC generation.  Hence it is suitable for shorter time series than the 5 seconds audio files in the 
datasets. In the initial trials of producing the recurrence plots for single audio clips it was observed that a 5 seconds 
clip took more than a day to process. However, a down-sampled (22.05 kHz) clip of less than 0.7 seconds length took 
around 3 seconds to process. The short clip had 15000 samples and, as a consequence, the resulting recurrence plot 
image had a resolution of 15000 x 15000 pixels.  

If an even shorter clip having 256 samples were to be used to produce a plot image of size 256 x 256 then there 
would have been a major loss in the audio signal information. Hence it was decided that a short down-sampled audio 
clip containing 15000 samples was a reasonable compromise between audio information and computation time.   

In order to reduce a 5 seconds sound clips from the dataset to the size required to generate a CRP image, we used 
an audio event extraction technique similar to the one used by Zhang et al1, where three high energy frames in the 
spectrogram are recognized and joined together to create an event-only clip. In our case, however, the five highest 
energy sound sample points are identified and a window of 3000 samples around each of the five high points is 
extracted from the clip and joined together creating a clip containing 15000 samples which is then used to produce 
the recurrence plot. The resulting images 15000 x 15000 images were then scaled down to the appropriate size of 256 
x 256 using standard image compression. In this way the CRP image dataset is created and used to train the networks. 

These initial results showed, that the accuracy using CRP was very low (see details in Section 4). Because of this 
we did not use CRP images in our main experiment described below, i.e., only Spectrograms and MFCC images were 
used in the main experiment. 

3.2.2. Main experiment 
 

The main experiment consisted of two steps. First, we investigated how the sampling rate of the audio files 
affected the classification accuracy. We considered three different sampling rates: 8 kHz, 16 kHz, and 32 kHz. This 
means that compared to 32 kHz, the high frequencies were filtered out in the case of 8 kHz and 16 kHz. Using Matlab, 
we obtained the corresponding Spectrogram and MFCC images for all the sound files in the (seven times expanded) 
ESC-50 and ESC-10 datasets. Based on these images, the classification accuracy for AlexNet and GoogLeNet were 
evaluated using 5-fold cross validation. We measured the average accuracy and the standard deviation for the five 
folds. 
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The experiment with the three frequencies showed that the best classification accuracy was obtained 16 kHz for 
ESC-50, and for 8 kHz for ESC-10. In the second step of the main experiment, we used the best frequencies when we 
investigated how the frame length affected the classification accuracy for the two datasets (see Section 3 for details). 
We considered four different frame lengths: 20 ms, 30 ms, 40 ms, and 50 ms. Since we use 50 frame overlap, we get 
2 x 20 = 40 frames per second for 50 ms frame length, i.e., for a 5 seconds sound file we get 200 frames; each frame 
is represented as one pixel in the x-dimension. Consequently, for 50 ms frame length, the last 56 pixels in the x-
dimension are blank. For 40 ms frame length we get 250 frames, leaving only 6 pixels blank in the x-dimension. For 
20 ms frame length we get 500 frames, and, as a consequence of the 256 x 256 size of the image, only the first 2.5 
seconds of the sound file can be represented in the Spectrogram and MFCC images for this frame length. Again, the 
classification accuracy for AlexNet and GoogLeNet were evaluated using 5-fold cross validation, and we measured 
the average accuracy and the standard deviation for the five folds. It turned out that the best accuracy was obtained 
for a frame length of 50 ms for the ESC-10 dataset and for 40 ms for the ESC-50 dataset (see Section 4 for details). 

Using 5-fold cross validation, we evaluated accuracy for the UrbanSound8K dataset. The UrbanSound8K dataset 
contains 10 classes, just like ESC-10, and we used the optimal settings for ESC-10 (i.e., 8 kHz sampling rate and 50 
ms frame length) when evaluating UrbanSound8K. The results are presented in Section 4. 

3.2.3. Using color channels 
 

The spectrogram, MFCC and CRP images are black and white. In this experiment, the Spectrogram, MFCC and 
CRP images were combined, into a single color image. The deep networks used in this study were designed to analyze 
color images.  
 

 
 

                       
 

Fig. 2. The combination of three image types to obtain a single color image. 

3.2.4. Evaluating Convolutional Recurrent Neural Networks (CRNN) 
 

Convolution recurrent neural networks (CRNN) is a combination of convolutional neural networks (CNN) and 
recurrent neural networks (RNN). The main advantage of recurrent neural networks is that they can preserve state, 
which is useful when processing sequences of data, e.g., in video classification19. We only use one image for each 
sound event, and it was therefore not obvious that combining CNN with RNN would improve accuracy. However, 
CRNNs have shown to be successful for detecting environmental sound events like gun shot, crying baby, and rain in 
situations where multiple simultaneous sound sources are mixed together20 (a.k.a. polyphonic sound events). In those 
cases, CRNN outperformed both CNN and RNN. Therefore, we wanted to compare the classification performance of 
a convolution recurrent neural network with AlexNet and GoogLeNet.   

We implemented a CRNN based on the design made Choi et al13. In order to benefit from the ability to preserve 
state in the CRNN, each image is fed into the network in a number of sequential steps in the same way as Choi et al 
did. Our implementations can be found on https://github.com/bkasvenkatesh/Classifying-Environmental-Sounds-
with-Image-Networks. This network was implemented in a framework called TensorFlow21. The original network was 
designed to accommodate data image size of 96 x 1366 pixels, but we modified the implementation to the image size 
used in our study (256 x 256).  In this experiments we used the same settings for learning rate and number parameters 
as Choi et al13 (see Section 4 for details). 
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4. Results 

Table 1 shows the result from the initial experiment. The table shows that the accuracy using CRP images was 
very low. As a consequence of this we decided to use only Spectrogram and MFCC images in the main experiment. 

Table 1. Accuracy obtained in the initial experiment; average from 5-fold cross validation. 

Dataset 
AlexNet  GoogLeNet  

Spectrogram MFCC CRP Spectrogram MFCC CRP 

ESC-10  78.4% 73.0% 28.6% 78.7% 75.9% 27.7% 

ESC-50  63.2% 44.9% 12.7% 67.8% 49.1% 10.1% 

 
Table 2 shows the classification accuracy for different sampling rates for AlexNet and GoogLeNet. The table 

shows that GoogLeNet has higher accuracy than AlexNet in most cases. Table 3 shows the sampling rates for which 
we obtained the highest average accuracies in Table 2. It turns out that 16 kHz is the best sampling rate for all cases 
except for ESC-10, Spectrograms, and AlexNet; in that case the best accuracy is obtained for 8 kHz sampling rate.  

As mentioned before, the frame length used in Table 2 was 30 ms. In the second part of the main experiment we 
evaluated different frame lengths. Table 4 shows the classification accuracy for different frame lengths for AlexNet 
and GoogLeNet; in this part of the experiment we used the sampling frequencies listed in Table 3. Again, it turns out 
that GoogLeNet has higher accuracy than AlexNet in most cases.  

Table 5 shows the highest accuracy values from Table 4, and the corresponding settings. As discussed in the 
previous section, we also measured the accuracy for the UrbanSound8K dataset. Since that dataset has the same 
number of classes (10) as ESC-10 we used the same settings for UrbanSound8K as for ESC-10.  

 

Table 2. Accuracy for different sampling rates; average and (standard deviation) from 5-fold cross validation. 

Dataset 
AlexNet / Sampling rate GoogLeNet /Sampling rate 

8 kHz  16 kHz 32 kHz 8 kHz 16 kHz 32 kHz 

ESC-10 Spectrograms 82.5% (0.4) 77.8% (0.9) 78.4% (0.6) 85.3% (0.7) 86.2% (0.7) 78.7% (0.8) 

ESC-10 MFCC 13.7% (0.7) 77.4% (0.6) 73.0% (0.8) 10.3% (0.5) 80.2% (0.6) 75.9% (0.7) 

ESC-50 Spectrograms 67.1% (1.1) 68.7% (0.8) 63.2% (0.9) 68.4% (1.9) 71.7% (0.9) 67.8% (1.6) 

ESC-50 MFCC 2.7% (0.3) 46.5% (0.5) 44.9% (1.3) 2.1% (0.3) 53.5% (1.0) 49.1% (0.8) 

 

Table 3. Sampling rates for which we obtained the best accuracy. 

Dataset 
AlexNet GoogLeNet 

Spectrograms MFCC Spectrograms MFCC 

ESC-10  8 kHz 

16 kHz 

16 kHz 16 kHz 

16 kHz 

16 kHz 

ESC-50  16 kHz 16 kHz 

Table 4. Accuracy for different frame lengths; average and (standard deviation) from 5-fold cross validation. 

Dataset 
AlexNet / Frame length GoogLeNet / Frame length 

20 ms  30 ms 40 ms 50 ms 20 ms  30 ms 40 ms 50 ms 

ESC-10 Spect. 72.6% (0.4) 82.5% (0.4) 83.0% (0.6) 85.6% (0.6) 68.5% (0.4) 86.2% (0.7) 88.7% (0.8) 90.5% (0.5) 

ESC-10 MFCC 73.1% (0.6) 77.4% (0.6) 68.1% (0.8) 72.3% (0.7) 76.1% (0.7) 80.2% (0.6) 76.2% (0.6) 75.4% (0.7) 

ESC-50 Spect. 66.7% (0.7) 68.7% (0.8) 67.6% (0.7) 65.4% (0.9) 69.2% (0.7) 71.7% (0.9) 73.2% (0.5) 71.5% (0.8) 

ESC-50 MFCC 45.5% (1.6) 44.9% (1.9) 45.7% (0.6) 44.7% (1.3) 47.4% (0.8) 53.1% (0.8) 50.3% (0.6) 46.7% (0.6) 
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The experiment with the three frequencies showed that the best classification accuracy was obtained 16 kHz for 
ESC-50, and for 8 kHz for ESC-10. In the second step of the main experiment, we used the best frequencies when we 
investigated how the frame length affected the classification accuracy for the two datasets (see Section 3 for details). 
We considered four different frame lengths: 20 ms, 30 ms, 40 ms, and 50 ms. Since we use 50 frame overlap, we get 
2 x 20 = 40 frames per second for 50 ms frame length, i.e., for a 5 seconds sound file we get 200 frames; each frame 
is represented as one pixel in the x-dimension. Consequently, for 50 ms frame length, the last 56 pixels in the x-
dimension are blank. For 40 ms frame length we get 250 frames, leaving only 6 pixels blank in the x-dimension. For 
20 ms frame length we get 500 frames, and, as a consequence of the 256 x 256 size of the image, only the first 2.5 
seconds of the sound file can be represented in the Spectrogram and MFCC images for this frame length. Again, the 
classification accuracy for AlexNet and GoogLeNet were evaluated using 5-fold cross validation, and we measured 
the average accuracy and the standard deviation for the five folds. It turned out that the best accuracy was obtained 
for a frame length of 50 ms for the ESC-10 dataset and for 40 ms for the ESC-50 dataset (see Section 4 for details). 

Using 5-fold cross validation, we evaluated accuracy for the UrbanSound8K dataset. The UrbanSound8K dataset 
contains 10 classes, just like ESC-10, and we used the optimal settings for ESC-10 (i.e., 8 kHz sampling rate and 50 
ms frame length) when evaluating UrbanSound8K. The results are presented in Section 4. 

3.2.3. Using color channels 
 

The spectrogram, MFCC and CRP images are black and white. In this experiment, the Spectrogram, MFCC and 
CRP images were combined, into a single color image. The deep networks used in this study were designed to analyze 
color images.  
 

 
 

                       
 

Fig. 2. The combination of three image types to obtain a single color image. 

3.2.4. Evaluating Convolutional Recurrent Neural Networks (CRNN) 
 

Convolution recurrent neural networks (CRNN) is a combination of convolutional neural networks (CNN) and 
recurrent neural networks (RNN). The main advantage of recurrent neural networks is that they can preserve state, 
which is useful when processing sequences of data, e.g., in video classification19. We only use one image for each 
sound event, and it was therefore not obvious that combining CNN with RNN would improve accuracy. However, 
CRNNs have shown to be successful for detecting environmental sound events like gun shot, crying baby, and rain in 
situations where multiple simultaneous sound sources are mixed together20 (a.k.a. polyphonic sound events). In those 
cases, CRNN outperformed both CNN and RNN. Therefore, we wanted to compare the classification performance of 
a convolution recurrent neural network with AlexNet and GoogLeNet.   

We implemented a CRNN based on the design made Choi et al13. In order to benefit from the ability to preserve 
state in the CRNN, each image is fed into the network in a number of sequential steps in the same way as Choi et al 
did. Our implementations can be found on https://github.com/bkasvenkatesh/Classifying-Environmental-Sounds-
with-Image-Networks. This network was implemented in a framework called TensorFlow21. The original network was 
designed to accommodate data image size of 96 x 1366 pixels, but we modified the implementation to the image size 
used in our study (256 x 256).  In this experiments we used the same settings for learning rate and number parameters 
as Choi et al13 (see Section 4 for details). 
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4. Results 

Table 1 shows the result from the initial experiment. The table shows that the accuracy using CRP images was 
very low. As a consequence of this we decided to use only Spectrogram and MFCC images in the main experiment. 

Table 1. Accuracy obtained in the initial experiment; average from 5-fold cross validation. 

Dataset 
AlexNet  GoogLeNet  

Spectrogram MFCC CRP Spectrogram MFCC CRP 

ESC-10  78.4% 73.0% 28.6% 78.7% 75.9% 27.7% 

ESC-50  63.2% 44.9% 12.7% 67.8% 49.1% 10.1% 

 
Table 2 shows the classification accuracy for different sampling rates for AlexNet and GoogLeNet. The table 

shows that GoogLeNet has higher accuracy than AlexNet in most cases. Table 3 shows the sampling rates for which 
we obtained the highest average accuracies in Table 2. It turns out that 16 kHz is the best sampling rate for all cases 
except for ESC-10, Spectrograms, and AlexNet; in that case the best accuracy is obtained for 8 kHz sampling rate.  

As mentioned before, the frame length used in Table 2 was 30 ms. In the second part of the main experiment we 
evaluated different frame lengths. Table 4 shows the classification accuracy for different frame lengths for AlexNet 
and GoogLeNet; in this part of the experiment we used the sampling frequencies listed in Table 3. Again, it turns out 
that GoogLeNet has higher accuracy than AlexNet in most cases.  

Table 5 shows the highest accuracy values from Table 4, and the corresponding settings. As discussed in the 
previous section, we also measured the accuracy for the UrbanSound8K dataset. Since that dataset has the same 
number of classes (10) as ESC-10 we used the same settings for UrbanSound8K as for ESC-10.  

 

Table 2. Accuracy for different sampling rates; average and (standard deviation) from 5-fold cross validation. 

Dataset 
AlexNet / Sampling rate GoogLeNet /Sampling rate 

8 kHz  16 kHz 32 kHz 8 kHz 16 kHz 32 kHz 

ESC-10 Spectrograms 82.5% (0.4) 77.8% (0.9) 78.4% (0.6) 85.3% (0.7) 86.2% (0.7) 78.7% (0.8) 

ESC-10 MFCC 13.7% (0.7) 77.4% (0.6) 73.0% (0.8) 10.3% (0.5) 80.2% (0.6) 75.9% (0.7) 

ESC-50 Spectrograms 67.1% (1.1) 68.7% (0.8) 63.2% (0.9) 68.4% (1.9) 71.7% (0.9) 67.8% (1.6) 

ESC-50 MFCC 2.7% (0.3) 46.5% (0.5) 44.9% (1.3) 2.1% (0.3) 53.5% (1.0) 49.1% (0.8) 

 

Table 3. Sampling rates for which we obtained the best accuracy. 

Dataset 
AlexNet GoogLeNet 

Spectrograms MFCC Spectrograms MFCC 

ESC-10  8 kHz 

16 kHz 

16 kHz 16 kHz 

16 kHz 

16 kHz 

ESC-50  16 kHz 16 kHz 

Table 4. Accuracy for different frame lengths; average and (standard deviation) from 5-fold cross validation. 

Dataset 
AlexNet / Frame length GoogLeNet / Frame length 

20 ms  30 ms 40 ms 50 ms 20 ms  30 ms 40 ms 50 ms 

ESC-10 Spect. 72.6% (0.4) 82.5% (0.4) 83.0% (0.6) 85.6% (0.6) 68.5% (0.4) 86.2% (0.7) 88.7% (0.8) 90.5% (0.5) 

ESC-10 MFCC 73.1% (0.6) 77.4% (0.6) 68.1% (0.8) 72.3% (0.7) 76.1% (0.7) 80.2% (0.6) 76.2% (0.6) 75.4% (0.7) 

ESC-50 Spect. 66.7% (0.7) 68.7% (0.8) 67.6% (0.7) 65.4% (0.9) 69.2% (0.7) 71.7% (0.9) 73.2% (0.5) 71.5% (0.8) 

ESC-50 MFCC 45.5% (1.6) 44.9% (1.9) 45.7% (0.6) 44.7% (1.3) 47.4% (0.8) 53.1% (0.8) 50.3% (0.6) 46.7% (0.6) 
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Table 5. Highest accuracy values in Table 4 and the accuracy for UrbanSound8K. 

Dataset Settings AlexNet GoogLeNet 

ESC-10  Spectrogram, 8 kHz sampling frequency  86% (50 ms frame length) 91% (50 ms frame length) 

ESC-50  Spectrogram, 16 kHz sampling frequency 69% (30 ms frame length) 73% (40 ms frame length) 

UrbanSound8K  Spectrogram, 8 kHz sampling frequency 90% (50 ms frame length) 93% (50 ms frame length) 

 
Table 6 shows the accuracy when combing the Spectrogram, MFCC, and CRP images. We reused the CRP image 

from the initial experiment for the ESC-10 and ESC-50 dataset, and generated new CRP images for UrbanSound8K. 
The CRP image for each sound file was combined with the Spectrogram and MFCC images with the settings that 
generated the highest accuracy, e.g., we combine the CRP with the Spectrogram obtained for16 kHz sample rate and 
40 ms frame length and the MFCC obtained for 16 kHz sample rate and 30 ms frame length for ESC-50 when we use 
GoogLeNet.  

Table 6 shows that compared to using Spectrograms with the best settings (see Table 5) there is no gain of 
combining the Spectrogram, MFCC and CRP images, except for a small improvement for UrbanSound8K when using 
AlexNet. The images used in Table 5 is a subset (one out of three colour channels) of the images used in Table 6. 
However, although we have more information when doing the classifications in Table 6, the accuracy is not improved. 

Table 7 shows the accuracy when using a convolutional recurrent neural network (CRNN) on the ESC-50 data 
set. The learning rate was set to 0.01 and the number of parameters is 500000 in this case. The table shows that the 
accuracy is only 60%, both when we only use Spectrograms and when we combine Spectrograms, MFCC, and CRP 
images. This accuracy is lower than the values obtained using AlexNet and GoogLeNet. 

Table 6. Accuracy when combining spectrograms, MFCC, and CRP images into one color image. 

Dataset AlexNet GoogLeNet 

ESC-10  86% 86% 

ESC-50  65% 73% 

UrbanSound8K  92% 93% 

 

Table 7. Accuracy using Convolutional Recurrent Neural Networks (CRNN). 

Dataset Spectrogram Spectrogram, MFCC, and CRP combined 

ESC-50  60.3% 60.0% 

 

5. Analysis and Discussion 

As discussed in the previous section, the best accuracy on UrbanSound8K dataset is 93% when trained on 
GoogLeNet using Spectrogram feature with a frame length of 50 ms and a sampling rate of 8 kHz; the best accuracy 
is 91% for ESC-10 and 73% for ESC-50. These three datasets have been used in a number of evaluations. In the study 
by Piczak11 the best average accuracy was 81% for ESC-10, 74% for UrbanSound8K, and 65% for ESC-50. A rather 
shallow convolutional neural network with four layers was used in that study. Salamon and Bello22 also use a rather 
shallow convolutional neural network with five layers. They only used UrbanSound8K in their study and the best 
average accuracy they got was 79%.  UrbanSound8K is also used in an evaluation by Ye et al23. They obtained a best 
average accuracy of 78% using a Mixture of Expert models (MoE). The ESC-10 dataset was used in study by Pillos 
et al24. They obtained a best average accuracy of 74.5% using a multi-layer perceptron and MFCC images. The ESC-
10 dataset was also used in an evaluation done by Hertel et al25. They used a deep neural network with 14 layers and 
achieved a best average accuracy of 89.9%.  

Based on the related work discussed in the previous paragraph and on the results reported by us, it is clear that 
the depth of the neural network is crucial; deeper networks give higher accuracy. The most obvious case are the results 
for ESC-10. Piczak used four layers and got 81% accuracy. AlexNet that was used in our study has eight layers and, 
for AlexNet, we got an accuracy of 86% for ESC-10, Hertel et al used a CNN with 14 layers and got an accuracy of 
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89.9%, and we got 91% accuracy using GoogLeNet that has 22 layers. The same trend is also visible for the 
UrbanSound8K measurements.  

Some of the operations done in our experiments were very time consuming. Producing Spectrogram images for 
the expanded ESC-50 dataset took approximately 5 minutes; the time for producing the corresponding MFCC images 
was the same, i.e., 5 minutes. However, producing the CRP images took 24 hours. Training AlexNet for 50 epochs on 
ESC-50 took 34 minutes; the corresponding training took 60 minutes on GoogLeNet. Training 50 epochs on our 
convolutional recurrent neural network implementation took 48 hours. Classifying 80 images only took about 10 
seconds independent on the network (AlexNet, GoogLeNet, or CRNN).  

Previous studies have shown that convolutional recurrent neural networks obtain high classification performance 
when different environmental sounds are mixed with each other20. We did not consider the additional challenge that 
different sounds, such as dog bark and gun shot, can occur at the same time; when sounds are not mixed our study 
shows that convolutional recurrent neural networks (CRNN) have relatively low accuracy (compare tables 5 and 7). 
However, we believe that CRNN could be more useful if each sound event was represented as a sequence of images, 
e.g., by chopping up long Spectrograms13 to more quadratic images that can be handled by the same image recognition 
networks that the mobile device uses for normal image recognition. 

In our experiments, we used a GPU to accelerate the classification tasks. Classification of sound (and images) is 
an important functionality in mobile devices. The GPU hardware available in modern mobile devices is becoming 
very powerful, thus making it realistic to use GPU hardware to accelerate classification also for mobile devices.  

6. Conclusions 

We have shown that deep convolutional neural networks, which are designed specifically for object recognition in 
images, can be successfully trained to classify spectral images of environmental sounds. This makes it possible to use 
the same technology for both object and sound recognition and classification. Most mobile devices contain both 
cameras and microphones, and companies that develop mobile devices would like to provide functionality for 
classifying both videos/images and sounds; using the same technology for both these classification tasks would reduce 
the development cost significantly. 

 In our main experiment we evaluated different sampling rates, frame lengths, and two deep convolutional neural 
networks (AlexNet and GoogLeNet) using three publicly available datasets. The best possible classification accuracies 
on the ESC-50, ESC-10, and UrbanSound8K datasets were 73%, 91%, and 93% respectively with GoogLeNet. 
GoogLeNet had higher classification accuracy than AlexNet in most of the case that we investigated. We believe that 
the main reason for this is that GoogLeNet is considerable deeper than AlexNet (22 compared to 8 layers).  

Our experiments also showed that the use of convolutional recurrent neural networks did not result in high 
accuracy. 

We evaluated the classification accuracy for three image representations of sound – Spectrograms, Mel-Frequency 
Cepstral Coefficients (MFCC), and Cross Recurrence Plot (CRP). In most cases, we obtained the highest classification 
accuracy when using Spectrograms. The prediction accuracy for CRP was very low. Combining Spectrograms, 
MFCC, and CRP as different color channels of the same image did not improve the classification accuracy.  

All the programs used in our experiments are available on the Internet, making it possible to repeat our experiments 
or do the same experiments on other datasets. 
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Table 5. Highest accuracy values in Table 4 and the accuracy for UrbanSound8K. 

Dataset Settings AlexNet GoogLeNet 

ESC-10  Spectrogram, 8 kHz sampling frequency  86% (50 ms frame length) 91% (50 ms frame length) 

ESC-50  Spectrogram, 16 kHz sampling frequency 69% (30 ms frame length) 73% (40 ms frame length) 

UrbanSound8K  Spectrogram, 8 kHz sampling frequency 90% (50 ms frame length) 93% (50 ms frame length) 

 
Table 6 shows the accuracy when combing the Spectrogram, MFCC, and CRP images. We reused the CRP image 

from the initial experiment for the ESC-10 and ESC-50 dataset, and generated new CRP images for UrbanSound8K. 
The CRP image for each sound file was combined with the Spectrogram and MFCC images with the settings that 
generated the highest accuracy, e.g., we combine the CRP with the Spectrogram obtained for16 kHz sample rate and 
40 ms frame length and the MFCC obtained for 16 kHz sample rate and 30 ms frame length for ESC-50 when we use 
GoogLeNet.  

Table 6 shows that compared to using Spectrograms with the best settings (see Table 5) there is no gain of 
combining the Spectrogram, MFCC and CRP images, except for a small improvement for UrbanSound8K when using 
AlexNet. The images used in Table 5 is a subset (one out of three colour channels) of the images used in Table 6. 
However, although we have more information when doing the classifications in Table 6, the accuracy is not improved. 

Table 7 shows the accuracy when using a convolutional recurrent neural network (CRNN) on the ESC-50 data 
set. The learning rate was set to 0.01 and the number of parameters is 500000 in this case. The table shows that the 
accuracy is only 60%, both when we only use Spectrograms and when we combine Spectrograms, MFCC, and CRP 
images. This accuracy is lower than the values obtained using AlexNet and GoogLeNet. 

Table 6. Accuracy when combining spectrograms, MFCC, and CRP images into one color image. 

Dataset AlexNet GoogLeNet 

ESC-10  86% 86% 

ESC-50  65% 73% 

UrbanSound8K  92% 93% 

 

Table 7. Accuracy using Convolutional Recurrent Neural Networks (CRNN). 

Dataset Spectrogram Spectrogram, MFCC, and CRP combined 

ESC-50  60.3% 60.0% 

 

5. Analysis and Discussion 

As discussed in the previous section, the best accuracy on UrbanSound8K dataset is 93% when trained on 
GoogLeNet using Spectrogram feature with a frame length of 50 ms and a sampling rate of 8 kHz; the best accuracy 
is 91% for ESC-10 and 73% for ESC-50. These three datasets have been used in a number of evaluations. In the study 
by Piczak11 the best average accuracy was 81% for ESC-10, 74% for UrbanSound8K, and 65% for ESC-50. A rather 
shallow convolutional neural network with four layers was used in that study. Salamon and Bello22 also use a rather 
shallow convolutional neural network with five layers. They only used UrbanSound8K in their study and the best 
average accuracy they got was 79%.  UrbanSound8K is also used in an evaluation by Ye et al23. They obtained a best 
average accuracy of 78% using a Mixture of Expert models (MoE). The ESC-10 dataset was used in study by Pillos 
et al24. They obtained a best average accuracy of 74.5% using a multi-layer perceptron and MFCC images. The ESC-
10 dataset was also used in an evaluation done by Hertel et al25. They used a deep neural network with 14 layers and 
achieved a best average accuracy of 89.9%.  

Based on the related work discussed in the previous paragraph and on the results reported by us, it is clear that 
the depth of the neural network is crucial; deeper networks give higher accuracy. The most obvious case are the results 
for ESC-10. Piczak used four layers and got 81% accuracy. AlexNet that was used in our study has eight layers and, 
for AlexNet, we got an accuracy of 86% for ESC-10, Hertel et al used a CNN with 14 layers and got an accuracy of 
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89.9%, and we got 91% accuracy using GoogLeNet that has 22 layers. The same trend is also visible for the 
UrbanSound8K measurements.  

Some of the operations done in our experiments were very time consuming. Producing Spectrogram images for 
the expanded ESC-50 dataset took approximately 5 minutes; the time for producing the corresponding MFCC images 
was the same, i.e., 5 minutes. However, producing the CRP images took 24 hours. Training AlexNet for 50 epochs on 
ESC-50 took 34 minutes; the corresponding training took 60 minutes on GoogLeNet. Training 50 epochs on our 
convolutional recurrent neural network implementation took 48 hours. Classifying 80 images only took about 10 
seconds independent on the network (AlexNet, GoogLeNet, or CRNN).  

Previous studies have shown that convolutional recurrent neural networks obtain high classification performance 
when different environmental sounds are mixed with each other20. We did not consider the additional challenge that 
different sounds, such as dog bark and gun shot, can occur at the same time; when sounds are not mixed our study 
shows that convolutional recurrent neural networks (CRNN) have relatively low accuracy (compare tables 5 and 7). 
However, we believe that CRNN could be more useful if each sound event was represented as a sequence of images, 
e.g., by chopping up long Spectrograms13 to more quadratic images that can be handled by the same image recognition 
networks that the mobile device uses for normal image recognition. 

In our experiments, we used a GPU to accelerate the classification tasks. Classification of sound (and images) is 
an important functionality in mobile devices. The GPU hardware available in modern mobile devices is becoming 
very powerful, thus making it realistic to use GPU hardware to accelerate classification also for mobile devices.  

6. Conclusions 

We have shown that deep convolutional neural networks, which are designed specifically for object recognition in 
images, can be successfully trained to classify spectral images of environmental sounds. This makes it possible to use 
the same technology for both object and sound recognition and classification. Most mobile devices contain both 
cameras and microphones, and companies that develop mobile devices would like to provide functionality for 
classifying both videos/images and sounds; using the same technology for both these classification tasks would reduce 
the development cost significantly. 

 In our main experiment we evaluated different sampling rates, frame lengths, and two deep convolutional neural 
networks (AlexNet and GoogLeNet) using three publicly available datasets. The best possible classification accuracies 
on the ESC-50, ESC-10, and UrbanSound8K datasets were 73%, 91%, and 93% respectively with GoogLeNet. 
GoogLeNet had higher classification accuracy than AlexNet in most of the case that we investigated. We believe that 
the main reason for this is that GoogLeNet is considerable deeper than AlexNet (22 compared to 8 layers).  

Our experiments also showed that the use of convolutional recurrent neural networks did not result in high 
accuracy. 

We evaluated the classification accuracy for three image representations of sound – Spectrograms, Mel-Frequency 
Cepstral Coefficients (MFCC), and Cross Recurrence Plot (CRP). In most cases, we obtained the highest classification 
accuracy when using Spectrograms. The prediction accuracy for CRP was very low. Combining Spectrograms, 
MFCC, and CRP as different color channels of the same image did not improve the classification accuracy.  

All the programs used in our experiments are available on the Internet, making it possible to repeat our experiments 
or do the same experiments on other datasets. 
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