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Pathology is the cornerstone of modern medicine and, in 
particular, cancer care. The pathologist’s diagnosis on glass 
slides is the basis for clinical and pharmaceutical research 

and, more importantly, for the decision on how to treat the patient. 
Nevertheless, the standard practice of microscopy for diagnosis, 
grading and staging of cancer has remained nearly unchanged for a 
century1,2. While other medical disciplines, such as radiology, have 
a long history of research and clinical application of computational 
approaches, pathology has remained in the background of the digi-
tal revolution. Only in recent years has digital pathology emerged 
as a potential new standard of care where glass slides are digitized 
into whole slide images (WSIs) using digital slide scanners. As scan-
ner technologies have become more reliable, and WSIs increasingly 
available in larger numbers, the field of computational pathology has 
emerged to facilitate computer-assisted diagnostics and to enable a 
digital workflow for pathologists3–5. These diagnostic decision sup-
port tools can be developed to empower pathologists’ efficiency and 
accuracy to ultimately provide better patient care.

Traditionally, predictive models used in decision support sys-
tems for medical image analysis relied on manually engineered fea-
ture extraction based on expert knowledge. These approaches were 
intrinsically domain specific and their performance was, in general, 
not sufficient for clinical applications. This approach was changed 
in recent years based on the enormous success and advancement 
of deep learning6 in solving image classification tasks, such as clas-
sification and categorization on ImageNet7–10, where high-capacity 
deep neural network models have been reported to surpass human 
performance10.

The medical image analysis field has seen widespread applica-
tion of deep learning, showing in some cases that clinical impact 
can be achieved for diagnostic tasks. Notably, ref. 11 reported  
dermatologist-level diagnosis of dermoscopy images, while ref. 12 

showed ophthalmologist-level performance on optical coherence 
tomography images.

Computational pathology, compared with other fields, has to 
face additional challenges related to the nature of pathology data 
generation. The lack of large annotated datasets is even more severe 
than in other domains. This is due in part to the novelty of digital 
pathology and the high cost associated with the digitization of glass 
slides. Furthermore, pathology images are tremendously large: glass 
slides scanned at 20× magnification (0.5 µm pixel−1) produce image 
files of several gigapixels; about 470 WSIs contain roughly the same 
number of pixels as the entire ImageNet dataset. Leveraging the 
peculiarity of pathology datasets has led most efforts in computa-
tional pathology to apply supervised learning for classifying small 
tiles within a WSI13–22. This usually requires extensive annotations 
at the pixel level by expert pathologists. For these reasons, state-
of-the-art pathology datasets are small and heavily curated. The 
CAMELYON16 challenge for breast cancer metastasis detection23 
contains one of the largest labeled datasets in the field, with a total 
of 400 non-exhaustively annotated WSIs.

Applying deep learning for supervised classification on these 
small datasets has achieved encouraging results. Of note, the 
CAMELYON16 challenge reported performance on par with that 
of pathologists in discerning between benign tissue and metastatic 
breast cancer23. Yet, the applicability of these models in clinical 
practice remains in question because of the wide variance of clini-
cal samples that is not captured in small datasets. Experiments pre-
sented in this article will substantiate this claim.

To properly address the shortcomings of current computa-
tional approaches and enable clinical deployment of decision sup-
port tools requires training and validation of models on large-scale  
datasets representative of the wide variability of cases encountered 
every day in the clinic. At that scale, reliance on expensive and  
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time-consuming, manual annotations is impossible. We address all 
of these issues by collecting a large computational pathology dataset 
and by proposing a new framework for training classification mod-
els at a very large scale without the need for pixel-level annotations. 
Furthermore, in light of the results we present in this work, we will 
formalize the concept of clinical-grade decision support systems, 
proposing—in contrast with the existing literature—a new measure 
for clinical applicability.

One of the main contributions of this work is the scale at which 
we learn classification models. We collected three datasets in the 
field of computational pathology: (1) a prostate core biopsy dataset 
consisting of 24,859 slides; (2) a skin dataset of 9,962 slides; and  
(3) a breast metastasis to lymph nodes dataset of 9,894 slides. Each 
of these datasets is at least one order of magnitude larger than all 
other datasets in the field. To put this in the context of other com-
puter vision problems, we analyzed an equivalent number of pixels 
to 88 ImageNet datasets (Fig. 1a). It is important to stress that the 
data were not curated. The slides collected for each tissue type rep-
resent the equivalent of at least 1 year of clinical cases and are thus 
representative of slides generated in a true pathology laboratory, 
including common artifacts, such as air bubbles, microtomy knife 
slicing irregularities, fixation problems, cautery, folds and cracks, 
as well as digitization artifacts, such as striping and blurred regions. 
Across the three tissue types, we included 17,661 external slides, 
which were produced in the pathology laboratories of their respec-
tive institutions within the United States and another 44 countries 
(Extended Data Fig. 1), illustrating the unprecedented technical 
variability included in a computational pathology study.

The datasets chosen represent different but complementary 
views of clinical practice, and offer insight into the types of chal-
lenges a flexible and robust decision support system should be able 
to solve. Prostate cancer is the leading source of new cancer cases 
and the second most frequent cause of death among men after lung 
cancers24. Multiple studies have shown that prostate cancer diag-
nosis has a high inter- and intraobserver variability25–27 and is fre-
quently based on the presence of very small lesions that comprise 
<1% of the entire tissue surface area (Fig. 1b). Making diagnosis 
more reproducible and aiding in the diagnosis of cases with low 
tumor volume are examples of how decision support systems can 
improve patient care. The skin cancer basal cell carcinoma (BCC) 
rarely causes metastases or death28. In its most common form 
(nodular), pathologists can readily identify and diagnose the lesion. 
With approximately 4.3 million individuals diagnosed annually in 
the United States29, it is the most common form of cancer. In this 
scenario, a decision support system should increase clinical effi-
ciency by streamlining the work of the pathologist.

To fully leverage the scale of our datasets, it is unfeasible to 
rely on supervised learning, which requires manual annotations. 
Instead, we propose to use the slide-level diagnosis, which is read-
ily available from anatomic pathology laboratory information sys-
tems (LISs) or electronic health records, to train a classification 
model in a weakly supervised manner. Crucially, diagnostic data 
retrieved from pathology reports are easily scalable, as opposed to 
expert annotation for supervised learning, which is time prohibitive 
at scale. To be more specific, the slide-level diagnosis casts a weak 
label on all tiles within a particular WSI. In addition, we know that 
if the slide is negative, all of its tiles must also be negative and not 
contain tumor. In contrast, if the slide is positive, it must be true that 
at least one of all of the possible tiles contains tumor. This formaliza-
tion of the WSI classification problem is an example of the general 
standard multiple instance assumption, for which a solution was 
first described in ref. 30. Multiple instance learning (MIL) has since 
been widely applied in many machine learning domains, including 
computer vision31–34.

Current methods for weakly supervised WSI classification rely on 
deep learning models trained under variants of the MIL assumption.  

Typically, a two-step approach is used, where first a classifier is 
trained with MIL at the tile level and then the predicted scores for 
each tile within a WSI are aggregated, usually by combining (pool-
ing) their results with various strategies35, or by learning a fusion 
model36. Inspired by these works, we developed a novel frame-
work that leverages MIL to train deep neural networks, resulting 
in a semantically rich tile-level feature representation. These rep-
resentations are then used in a recurrent neural network (RNN) to 
integrate the information across the whole slide and report the final 
classification result (Fig. 1c,d).

Results
Test performance of ResNet34 models trained with MIL for each 
tissue type. We trained ResNet34 models to classify tiles using MIL. 
At test time, a slide is predicted positive if at least one tile is pre-
dicted positive within that particular slide. This slide-level aggrega-
tion derives directly from the standard multiple instance assumption 
and is generally referred to as max-pooling. Performance on the test 
set was measured for models trained at different magnifications for 
each dataset (Extended Data Fig. 2). Histology contains informa-
tion at different scales, and pathologists review patient tissue on 
glass slides at varying zoom levels. For example, in prostate histo-
pathology, architectural and cytological features are both important 
for diagnosis and are more easily appreciated at different magni-
fications. For prostate, the highest magnification consistently gave 
better results (Extended Data Fig. 2a), while for BCC detection,  
5× magnification showed higher accuracy (Extended Data Fig. 2b).  
Interestingly, the error modes on the test set across magnifica-
tion conditions were complementary: in prostate, the 20× model 
performed better in terms of false negatives, while the 5× model 
performed better on false positives. Simple ensemble models were 
generated by max-pooling the response across the different magni-
fications. We note that these naive multiscale models outperformed 
the single-scale models for the prostate dataset in terms of accu-
racy and area under the curve (AUC), but not for the other datasets. 
Models trained at 20× achieved AUCs of 0.986, 0.986 and 0.965 on 
the test sets of the prostate, BCC and axillary lymph node datasets, 
respectively, highlighting the efficacy of the proposed method in 
discerning tumor regions from benign regions in a wide variety of 
tissue types.

Dataset size dependence of classification accuracy. We conducted 
experiments to determine whether the dataset was large enough to 
saturate the error rate on the validation set. For these experiments, 
the prostate dataset (excluding the test portion) was split in a com-
mon validation set with 2,000 slides and training sets of different 
sizes (100, 200, 500, 1,000, 2,000, 4,000, 6,000 and 8,000), with each 
training dataset being a superset of all of the previous datasets. The 
results indicate that while the validation error is starting to saturate, 
further improvement can be expected from even larger datasets 
than the one collected for this study (Fig. 2a). Although the number 
of slides needed to achieve satisfactory results may vary by tissue 
type, we observed that, in general, at least 10,000 slides are neces-
sary for good performance.

Model introspection by visualization of the feature space in two 
dimensions. To gain insight into the model’s representation of his-
topathology images, we visualized the learned feature space in two 
dimensions so that tiles that have similar features according to the 
model are shown close to each other (see Fig. 2b,c for the prostate 
model and Extended Data Fig. 3 for the BCC and axillary lymph 
nodes models). The prostate model shows a large region of different 
stroma tiles at the center of the plot in Fig. 2c, extending towards 
the top right corner. The top left corner is where benign-looking 
glands are represented. The bottom portion contains background 
and edge tiles. The discriminative tiles with high tumor probability 
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are clustered in two regions at the bottom and left of the plot. A 
closer look reveals the presence of malignant glands. Interestingly, 
a subset of the top-ranked tiles with a tumor probability close to 
0.5, indicating uncertainty, are tiles that contain glands suspicious 
of being malignant.

Comparison of different slide aggregation approaches. The max-
pooling operation that leads to the slide prediction under the MIL 
assumption is not robust. A single spurious misclassification can 
change the slide prediction, possibly resulting in a large number of 
false positives. One way to mitigate this type of mistake is to learn 
a slide aggregation model on top of the MIL classification results. 

For example, Hou et al.36. learned a logistic regression based on the 
number of tiles per class as predicted by an ensemble of tile classi-
fiers. Similarly, Wang et  al.18. extracted geometrical features from 
the tumor probability heat map generated by a tile-level classifier 
and trained a random forest model, winning the CAMELYON16 
challenge. Following the latter approach, we trained a random forest 
model on manually engineered features extracted from the heat map 
generated by our MIL-based tile classifier. For prostate cancer clas-
sification, the random forest trained on the validation split at 20× 
magnification produced an AUC of 0.98 on the test set, which was 
not statistically significantly different from MIL alone (Extended 
Data Fig. 4). Although this procedure drastically decreased the false 
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Fig. 1 | Overview of the data and proposed deep learning framework presented in this study. a, Description of the datasets. This study is based on a total 
of 44,732 slides from 15,187 patients across three different tissue types: prostate, skin and axillary lymph nodes. The prostate dataset was divided into 
in-house slides and consultation slides to test for staining bias. The class imbalance varied from 1:4 for prostate to 1:3 for breast. A total of 17,661 slides 
were submitted to MSK from more than 800 outside institutions in 45 countries for a second opinion. To put the size of our dataset into context, the last 
column shows a comparison, in terms of the pixel count, with ImageNet—the state of the art in computer vision, containing over 14 million images. b, Left, 
hematoxylin and eosin slide of a biopsy showing prostatic adenocarcinoma. The diagnosis can be based on very small foci of cancer that account for <1% 
of the tissue surface. In the slide to the left, only about six small tumor glands are present. The right-most image shows an example of a malignant gland. 
Its relation to the entire slide is put in perspective to reiterate the difficulty of the task. c, The MIL training procedure includes a full inference pass through 
the dataset, to rank the tiles according to their probability of being positive, and learning on the top-ranking tiles per slide. CNN, convolutional neural 
network. d, Slide-level aggregation with a recurrent neural network (RNN). The S most suspicious tiles in each slide are sequentially passed to the RNN to 
predict the final slide-level classification.
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positive rate, and at 20× achieved a better balanced error than the 
basic max-pooling aggregation, this came with an unacceptable 
decrease in sensitivity.

The previous aggregation methods do not take advantage of the 
information contained in the feature representation learned during 
training. Given a vector representation of tiles, even if singularly they 
were not classified as positive by the tile classifier, taken together 
they could be suspicious enough to trigger a positive response by a 
representation-based slide-level classifier. Based on these ideas and 

empirical support from ref. 37, we introduce an RNN-based model 
that can integrate information at the representation level to emit a 
final slide classification (Fig. 1d). Interestingly, information can also 
be integrated across the various magnifications to produce a multi-
scale classification. At 20×, the MIL-RNN models resulted in 0.991, 
0.989 and 0.965 AUCs for the prostate, BCC and breast metastases 
datasets, respectively (Fig. 3). For the prostate experiment, the MIL-
RNN method was statistically significantly better than max-pooling 
aggregation. The multiscale approach was tested on the prostate 
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Fig. 2 | Dataset size impact and model introspection. a, Dataset size plays an important role in achieving clinical-grade MIL classification performance. 
Training of ResNet34 was performed with datasets of increasing size; for every reported training set size, five models were trained, and the validation 
errors are reported as box plots (n = 5). This experiment underlies the fact that a large number of slides are necessary for generalization of learning 
under the MIL assumption. b,c, The prostate model has learned a rich feature representation of histopathology tiles. b, A ResNet34 model trained at 20× 
was used to obtain the feature embedding before the final classification layer for a random set of tiles in the test set (n = 182,912). The embedding was 
reduced to two dimensions with t-SNE and plotted using a hexagonal heat map. Top-ranked tiles coming from negative and positive slides are represented 
by points colored by their tumor probability. c, Tiles corresponding to points in the two-dimensional t-SNE space were randomly sampled from different 
regions. Abnormal glands are clustered together on the bottom and left sides of the plot. A region of tiles with a tumor probability of ~0.5 contains glands 
with features suspicious for prostatic adenocarcinoma. Normal glands are clustered on the top left region of the plot.a, Dataset size plays an important 
role in achieving clinical-grade MIL classification performance. Training of ResNet34 was performed with datasets of increasing size; for every reported 
training set size, five models were trained, and the validation errors are reported as box plots (n = 5). This experiment underlies the fact that a large 
number of slides are necessary for generalization of learning under the MIL assumption. b,c, The prostate model has learned a rich feature representation 
of histopathology tiles. b, A ResNet34 model trained at 20× was used to obtain the feature embedding before the final classification layer for a random 
set of tiles in the test set (n = 182,912). The embedding was reduced to two dimensions with t-SNE and plotted using a hexagonal heat map. Top-ranked 
tiles coming from negative and positive slides are represented by points colored by their tumor probability. c, Tiles corresponding to points in the two-
dimensional t-SNE space were randomly sampled from different regions. Abnormal glands are clustered together on the bottom and left sides of the plot. 
A region of tiles with a tumor probability of ~0.5 contains glands with features suspicious for prostatic adenocarcinoma. Normal glands are clustered on 
the top left region of the plot.
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data, but its performance was not better than that achieved by the 
single-scale model trained at 20×.

Pathology expert analysis of the MIL-RNN error modes. 
Pathologists specialized in each discipline analyzed the test set 
errors made by MIL-RNN models trained at 20× magnification  
(a selection of cases is presented in Fig. 4a–c). Several discrepan-
cies (six in prostate, eight in BCC and 23 in axillary lymph nodes; 
see Fig. 4d) were found between the reported case diagnosis  
and the true slide class (that is, presence/absence of tumor). 
Because the ground truth is reliant on the diagnosis reported in 
the LIS, the observed discrepancies can be due to several factors: 
(1) under the current WSI scanning protocol, as only select slides 
are scanned in each case, there exists the possibility of a mismatch 
between the slide scanned and the reported LIS diagnosis linked to 
each case; (2) a deeper slide level with no carcinoma present could 
be selected for scanning; and (3) tissue was removed to create tis-
sue microarrays before slide scanning. Encouragingly, the training 
procedure proved robust to the ground truth noise in our datasets.

For the prostate model, three of the 12 false negatives were cor-
rectly predicted as negative by the algorithm. Three other slides 
showed atypical morphological features, but they were not sufficient 
to diagnose carcinoma. The confirmed six false negatives were char-
acterized by having very low tumor volume. Taking into account the 
corrections to the ground truth, the AUC for the prostate test set 
improved from 0.991 to 0.994. The 72 false positives were reviewed 
as well. The algorithm falsely identified small foci of glands as 
cancer, focusing on small glands with hyperchromatic nuclei that 
contained at least a few cells with prominent nucleoli. Many of the 
flagged glands also showed intraluminal secretions. Overall, the 
algorithm was justified in reporting the majority of these cases as 
suspicious, thus fulfilling the requisites of a screening tool.

For the BCC model, four false negatives were corrected to true 
negatives, and four false positives were corrected to true positives. 
Given these corrections, the AUC improved from 0.988 to 0.994. 
The 12 cases determined to be false negatives were characterized  
by low tumor volume. The 15 false positives included squamous  
cell carcinomas and miscellaneous benign neoplastic and non- 
neoplastic skin lesions.

For the breast metastasis model, 17 of the initially classified false 
negatives were correctly classified as negatives, while four slides 
contained suspicious morphology that would likely require follow-
up tests. A total of 21 false negatives were corrected to true negatives.  

In addition, two false positives were corrected to true positives. 
False negative to true negative corrections were due to the tissue of 
interest not being present on a deeper hematoxylin and eosin slide, 
or sampling error at the time the frozen section was prepared. False 
positive to true positive corrections were due to soft tissue meta-
static deposits or tumor emboli. The AUC improved from 0.965 to 
0.989 given these corrections. Of the 23 false negatives, eight were 
macro-metastasis, 13 were micro-metastasis and two were isolated 
tumor cells (ITCs). Notably, 12 cases (four false negatives and eight 
false positives) showed signs of treatment effect from neoadjuvant 
chemotherapy.

Investigation of technical variability introduced by slide prepa-
ration at multiple institutions and different scanners. Several 
sources of variability come into play in computational pathology. In 
addition to all of the morphological variability, technical variability 
is introduced during glass slide preparation and scanning. How this 
variability can affect the prediction of an assistive model is a ques-
tion that must be investigated thoroughly.

Assessing the performance of models on slides digitized on dif-
ferent scanners is crucial for enabling the application of the same 
model in departments with varied scanner vendor workflows or 
smaller clinics that operate scanners from different vendors and do 
not have the infrastructure to train a model tailored to their needs. 
To test the effect of the whole slide scanner type on model perfor-
mance, we scanned a substantial subset of the in-house prostate test 
set (1,274 out of 1,784) on a Philips IntelliSite Ultra Fast Scanner 
that was recently approved by the Food and Drug Administration 
for primary diagnostic use. We observed a decrease in performance 
in terms of AUC of 3% points (Fig. 5a and Extended Data Fig. 5a). 
Analyzing the mismatches between the predictions on Leica Aperio 
WSIs and their matching Philips digital slides revealed a perceived 
difference in brightness, contrast and sharpness that could affect the 
prediction performance. In practice, an effective solution to reducing 
the generalization error even further could be training on a mixed 
dataset or fine-tuning the model on data from the new scanner.

To measure the effects of slide preparation on model perfor-
mance, we gathered a very large set consisting of over 12,000 pros-
tate consultation slides submitted to the Memorial Sloan Kettering 
Cancer Center (MSK) from other institutions in the United States 
and abroad. It should be noted that these slides are typically  
diagnostically challenging and are the basis for the requested  
expert pathologist review. We applied the MIL-RNN model trained 
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Fig. 3 | Weakly supervised models achieve high performance across all tissue types. The performances of the models trained at 20× magnification on 
the respective test datasets were measured in terms of AUC for each tumor type. a, For prostate cancer (n = 1,784) the MIL-RNN model significantly 
(P < 0.001) outperformed the model trained with MIL alone, resulting in an AUC of 0.991. b,c, The BCC model (n = 1,575) performed at 0.988 (b), while 
breast metastases detection (n = 1,473) achieved an AUC of 0.966 (c). For these latter datasets, adding an RNN did not significantly improve performance. 
Statistical significance was assessed using DeLong’s test for two correlated ROC curves.
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at 20× to the large submitted slides dataset and observed a drop  
of about 6% points in terms of AUC (Fig. 5a and Extended Data  
Fig. 5a). Importantly, the decrease in performance was mostly seen 
in the specificity to the new test set, while sensitivity remained high.

Comparison of fully supervised learning with weakly super-
vised learning. To substantiate the claim that models trained under 
full supervision on small, curated datasets do not translate well 
to clinical practice, several experiments were performed with the 
CAMELYON16 dataset23, which includes pixel-wise annotations for 
270 training slides and is one of the largest annotated, public digital 
pathology datasets available. We implemented a model for auto-
matic detection of metastatic breast cancer on the CAMELYON16 
dataset, modeled after Wang et  al.18—the winning team of the 

CAMELYON16 challenge. The approach can be considered state 
of the art for this task and relies on fully supervised learning and 
pixel-level expert annotations. The main differences in our imple-
mentation of ref. 18 are the architecture used (ResNet34 instead of 
GoogLeNetv3), their usage of hard negative mining, and the features 
extracted to train the slide-level random forest classifier. Our imple-
mentation achieved an AUC of 0.930 on the CAMELYON16 test 
set, similar to the 0.925 achieved in ref. 18. This model would have 
won the classification portion of the CAMELYON16 challenge and 
would be ranked fifth on the open leaderboard. The same model, 
trained under full supervision on CAMELYON16, was applied to 
the MSK test set of the axillary lymph nodes dataset and resulted 
in an AUC of 0.727, constituting a 20% drop compared with its  
performance on the CAMELYON16 test set (Fig. 5b, right panel). 
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magnification was run with a step size of 20 pixels across a region of interest, generating a tumor probability heat map. On every slide, the blue square 
represents the enlarged area. For the prostate dataset (a), the true positive represents a difficult diagnosis due to tumor found next to atrophy and 
inflammation; the false negative shows a very low tumor volume; and for the false positive the model identified atypical small acinar proliferation, showing 
a small focus of glands with atypical epithelial cells. For the BCC dataset (b), the true positive has a low tumor volume; the false negative has a low tumor 
volume; and for the false positive the tongue of the epithelium abutting from the base of the epidermis shows an architecture similar to BCC. For the 
axillary lymph nodes dataset (c), the true positive shows ITCs with a neoadjuvant chemotherapy treatment effect; the false negative shows a slightly out of 
focus cluster of ITCs missed due to the very low tumor volume and blurring; and the false positive shows displaced epithelium/benign papillary inclusion 
in a lymph node. d, Subspecialty pathologists analyzed the slides that were misclassified by the MIL-RNN models. While slides can either be positive or 
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The reverse experiment, done by training our MIL model on the 
MSK axillary lymph node data and testing it on the CAMELYON16 
test data, produced an AUC of 0.899, representing a much smaller 
drop in performance compared with the 0.965 on the MSK test set 
(Fig. 5b, left panel).

These results illustrate that current deep learning models, trained 
on small datasets, even with the advantage of exhaustive, pixel-wise 
labels, are not able to generalize to clinical-grade, real-world data. 
We hypothesize that small, well-curated datasets are not sufficient 
to capture the vast biological and morphological variability of can-
cer, as well as the technical variability introduced by the staining 
and preparation processes in histopathology. Our observations 
urge caution and in-depth evaluation on real-world datasets before 
applying deep learning models for decision support in clinical prac-
tice. These results also show that weakly supervised approaches 
such as the one proposed here have a clear advantage over conven-
tional fully supervised learning in that they enable training on mas-
sive, diverse datasets without the necessity for data curation.

Discussion
The main hypothesis addressed in this work is that clinical-grade 
performance can be reached without annotating WSIs at the pixel 
level. To test our hypothesis, we developed a deep learning frame-
work that combines convolutional neural networks with RNNs 
under a MIL approach. We compiled a large dataset comprising 
44,732 slides from 15,187 patients across three different cancer 
types. We built a state-of-the-art compute cluster that was essential 
for the feasibility of the project. Extensive validation experiments 
confirmed the hypothesis and showed that clinical-grade decision 
support is feasible.

The implications of these results are wide ranging. (1) The fact 
that manual pixel-level annotation is not necessary allows for the 
compilation of datasets that are magnitudes larger than in previ-
ous studies. (2) This, in turn, allows our algorithm to learn from 

the full breadth of slides presented to clinicians from real-life clini-
cal practice, representing the full wealth of biological and technical 
variability. (3) As a result, no data curation is necessary because the 
model can learn that artifacts are not important for the classifica-
tion task. (4) The previous two points allow the model trained with 
the proposed method to generalize better to real data that would be 
observed in pathology practice. (5) The generalization performance 
is clinically relevant with AUCs greater than 0.98 for all cancer types 
tested. (6) We rigorously define clinical grade and propose a strat-
egy to integrate this system in the clinical work flow.

Most literature refers to clinical grade in terms of comparison 
with a human performing the same task, usually under time or 
other constraints. We suggest that these comparisons are artificial 
and offer little insight into how to use such systems in clinical prac-
tice. We propose a different approach to measure clinical-grade 
performance. In clinical practice, a case, especially if challenging, 
is reviewed by multiple pathologists with the help of immunohis-
tochemistry and molecular information in addition to hematoxylin 
and eosin morphology. On the basis of this companion information, 
one can assume that a team of pathologists at a comprehensive can-
cer center will operate with 100% sensitivity and specificity. Under 
these assumptions, clinical grade for a decision support system does 
not mean surpassing the performance of pathologists, which is 
impossible, but achieving 100% sensitivity with an acceptable false 
positive rate. This formulation lends itself to a clinical application 
as follows.

At a fully operational digital pathology department, the predic-
tive model is run on each scanned slide. The algorithm sorts cases, 
and slides within each case, based on the predicted tumor prob-
ability, as soon as they are available from the pathology laboratory. 
During diagnostic reporting, the pathologist is presented with the 
model’s recommendations through an interface that would flag 
positive slides for rapid review in a screening scenario, or disregard 
all benign slides in a diagnostic scenario. In this latter case, we show 
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Fig. 5 | Weak supervision on large datasets leads to higher generalization performance than fully supervised learning on small curated datasets. The 
generalization performance of the proposed prostate and breast models were evaluated on different external test sets. a, Results of the prostate model 
trained with MIL on MSK in-house slides and tested on: (1) the in-house test set (n = 1,784) digitized on Leica Aperio AT2 scanners; (2) the in-house test 
set digitized on a Philips Ultra Fast Scanner (n = 1,274); and (3) external slides submitted to MSK for consultation (n = 12,727). Performance in terms of 
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in Fig. 6 (see Extended Data Fig. 6 for BCC and breast metastases) 
that our prostate model would allow the removal of more than 75% 
of the slides from the workload of a pathologist without any loss in 
sensitivity at the patient level. For pathologists who must operate in 
the increasingly complex, detailed and data-driven environment of 
cancer diagnostics, tools such as this will allow non-subspecialized 
pathologists to confidently and efficiently classify cancer with 100% 
sensitivity.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41591-019-0508-1.
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Methods
Hardware and software. All experiments were conducted on MSK’s high-
performance computing cluster. In particular, we took advantage of seven NVIDIA 
DGX-1 compute nodes, each containing eight V100 Volta graphics processing 
units (GPUs) and 8TB SSD local storage. Each model was trained on a single  
GPU. We used OpenSlide38 (version 3.4.1) to access the WSI files on the fly,  
and PyTorch39 (version 1.0) for data loading, building models and training.  
The final statistical analysis was performed in R40 (version 3.3.3), using pROC41 
(version 1.9.1) for receiver operating characteristic (ROC) statistics and ggplot2 
(version 3.0.0)42 for generating plots.

Statistics. AUCs for the various ROC curves were calculated in R with pROC. 
Confidence intervals were computed with the pROC package41 using bootstrapping 
with nonparametric, unstratified resampling, as described by Carpenter and 
Bithell43. Pairs of AUCs were compared with the pROC package41 using the two-
tailed DeLong’s test for two correlated ROC curves44.

WSI datasets. We collected three large datasets of hematoxylin and eosin-stained 
digital slides for the following tasks: (1) prostatic carcinoma classification; (2) BCC 
classification; and (3) the detection of breast cancer metastasis in axillary lymph 
nodes. A description is given in Fig. 1a. Unless otherwise stated, glass slides were 
scanned at MSK with Leica Aperio AT2 scanners at 20× equivalent magnification 
(0.5 µm pixel−1). Each dataset was randomly divided at the patient level in training 
(70%), validation (15%) and test (15%) sets. The training and validation sets were 
used for hyper-parameter tuning and model selection. The final models were run 
once on the test set to estimate generalization performance.

The prostate dataset consisted of 12,132 core needle biopsy slides produced and 
scanned at MSK (we refer to these as in-house slides). A subset of 2,402 slides were 
positive for prostatic carcinoma (that is, contained Gleason patterns 3 and above).  
An in-depth stratification by Gleason grade and tumor size is included in 
Supplementary Table 1. In addition to the in-house set, we also retrieved a set of 
12,727 prostate core needle biopsies submitted to MSK for a second opinion from 
other institutions around the world. These slides were produced at their respective 
institutions but scanned on the whole slide scanners at MSK. For prostate only, 
the external slides were not used during training, but only at test time to estimate 
generalization to various sources of technical variability in glass slide preparation. A 
portion of the prostate (1,274 out of 1,784) test set was scanned on a Philips IntelliSite 
Ultra Fast Scanner to test generalization performance to scanning variability.

The skin dataset consisted of 9,962 slides from biopsies and excisions of a wide 
range of neoplastic and non-neoplastic skin lesions, including 1,659 BCCs, with all 
common histological variants (superficial, nodular, micronodular and infiltrative) 
represented. The breast cancer metastases dataset of axillary lymph nodes consisted 
of 9,894 slides, 2,521 of which contained macro-metastases, micro-metastases 
or ITCs. Included in this dataset were slides generated from intraoperative 
consultations (for example, frozen section slides), in which the quality of staining 
varied from the standardized hematoxylin and eosin staining protocols used on 
slides from formalin-fixed, paraffin-embedded tissue. The dataset also included 
patients treated with neoadjuvant chemotherapy, which may be diagnostically 
challenging in routine pathology practice (that is, a small volume of metastatic 
tumor and therapy-related changes in tumor morphology) and are known to lead 
to high false negative rates45. For the skin and axillary lymph nodes data, external 
slides were included during training.

Slide diagnosis retrieval. Pathology reports are recorded in the LIS of the 
pathology department. For the prostate and axillary lymph nodes datasets, the 
ground truth labels (that is, the slide-level diagnoses) are retrieved directly 
by querying the LIS database. This is made possible by the structured nature 
of the reporting done for these subspecialties. In dermatopathology, BCCs 
are not reported in structured form. To overcome this problem, a trained 
dermatopathologist (A.M.) checked the free text diagnoses and assigned final 
binary labels to each case manually.

Dataset curation. The datasets were not curated, to test the applicability of the 
proposed system in a real-world, clinical scenario. Across all datasets, fewer than 
ten slides were removed due to excessive pen markings.

MIL-based slide diagnosis. Classification of a whole digital slide (for example, 
WSI) based on a tile-level classifier can be formalized under the classic MIL 
approach when only the slide-level class is known and the classes of each tile in 
the slide are unknown. Each slide si from our slide pool = = …S s i n{ : 1, 2, , }i  can 
be considered a bag consisting of a multitude of instances (we used tiles of size 
224 × 224 pixels). For positive bags, there must exist at least one instance that is 
classified as positive by some classifier. For negative bags, instead, all instances 
must be classified as negative. Given a bag, all instances are exhaustively  
classified and ranked according to their probability of being positive. If the bag is 
positive, the top-ranked instance should have a probability of being positive that 
approaches 1; if it is negative, its probability of being positive should approach 0. 
Solving the MIL task induces the learning of a tile-level representation that can  
linearly separate the discriminative tiles in positive slides from all other tiles.  

This representation will be used as input to an RNN. The complete pipeline for the 
MIL classification algorithm (Fig. 1c) comprises the following steps: (1) tiling of 
each slide in the dataset (for each epoch, which consists of an entire pass through 
the training data); (2) a complete inference pass through all of the data; (3) intra-
slide ranking of instances; and 4) model learning based on the top-ranked instance 
for each slide.

Slide tiling. The instances were generated by tiling each slide on a grid (Extended 
Data Fig. 7). Otsu’s method is used to threshold the slide thumbnail image to 
efficiently discard all background tiles, thus drastically reducing the amount of 
computation per slide. Tiling can be performed at different magnification levels 
and with various levels of overlap between adjacent tiles. We investigated three 
magnification levels (5×, 10x and 20×). The amount of overlap used was different 
at each magnification during training and validation: no overlap at 20×, 50% 
overlap at 10× and 67% overlap at 5×. For testing, we used 80% overlap at every 
magnification. Given a tiling strategy, we produce bags B = {Bsi

: i = 1, 2,…, n}, 
where Bsi

 = {bi,1, bi,2,…, bi m, i
} is the bag for slide si containing mi total tiles.

Model training. The model is a function fθ with current parameter θ that maps input 
tiles bi,j to class probabilities for ‘negative’ and ‘positive’ classes. Given our bags B, 
we obtain a list of vectors O = {oi: i = 1, 2,…, n}—one for each slide si containing the 
probabilities of class ‘positive’ for each tile bi,j: j = 1, 2,…, m in Bsi

. We then obtain 
the index ki of the tile within each slide, which shows the highest probability of 
being ‘positive’: ki = argmax(oi). This is the most stringent version of MIL, but we 
can relax the standard MIL assumption by introducing hyper-parameter K and 
assume that at least K tiles exist in positive slides that are discriminative. For K = 1, 
the highest ranking tile in bag Bsi

 is then bi,k. The output of the network y˜i = fθ(bi,k) 
can then be compared to yi, the target of slide si, through the cross-entropy loss l 
as in equation (1). Similarly, if K > 1, all selected tiles from a slide share the same 
target yi and the loss can be computed with equation (1) for each one of the K tiles:

= − ̃ − − − ̃l w y y w y y1[ log[ ]] 0[(1 )log[1 ]] (1)i i i i

Given the unbalanced frequency of classes, weights w0 and w1, for negative and 
positive classes, respectively, can be used to give more importance to the under-
represented examples. The final loss is the weighted average of the losses over a 
mini-batch. Minimization of the loss is achieved via stochastic gradient descent 
(SGD) using the Adam optimizer and learning rate 0.0001. We used mini-batches 
of size 512 for AlexNet, 256 for ResNets and 128 for VGGs and DenseNet201. All 
models were initialized with ImageNet pretrained weights. Early stopping was used 
to avoid overfitting.

Model testing. At validation/test time, all of the tiles for each slide are fed through 
the network. Given a threshold (usually 0.5), if at least one tile is positive, the 
entire slide is called positive; if all of the instances are negative, the slide is negative. 
In addition, we assume the probability of a slide being positive to be the highest 
probability among all of the tiles in that slide. This max-pooling over the tile 
probability is the easiest aggregation technique. We explore different aggregation 
techniques below.

Naive multiscale aggregation. Given models f20×, f10x, and f5x trained at 20×, 10× and 
5× magnifications, a multiscale ensemble can be created by pooling the predictions 
of each model with an operator. We used average and max-pooling to obtain naive 
multiscale models.

Random forest-based slide integration. Given a model f trained at a particular 
resolution, and a WSI, we can obtain a heat map of tumor probability over the 
slide. We can then extract several features from the heat map to train a slide 
aggregation model. For example, Hou et al.36 used the count of tiles in each class to 
train a logistic regression model. Here, we extend that approach by adding several 
global and local features, and train a random forest to emit a slide diagnosis. The 
features extracted are: (1) total count of tiles with probability ≥0.5; (2–11) ten-
bin histogram of tile probability; (12–30) count of connected components for a 
probability threshold of 0.1 of size in the ranges 1–10, 11–15, 16–20, 21–25, 26–30, 
31–40, 41–50, 51–60, 61–70 and >70, respectively; (31–40) ten-bin local histogram 
with a window of size 3 × 3 aggregated by max-pooling; (41–50) ten-bin local 
histogram with a window of size 3 × 3 aggregated by averaging; (51–60) ten-bin 
local histogram with a window of size 5 × 5 aggregated by max-pooling; (61–70) 
ten-bin local histogram with a window of size 5 × 5 aggregated by averaging;  
(71–80) ten-bin local histogram with a window of size 7 × 7 aggregated by  
max-pooling; (81–90) ten-bin local histogram with a window of size 7 × 7 aggregated 
by averaging; (91–100) ten-bin local histogram with a window of size 9 × 9 aggregated 
by max-pooling; (101–110) ten-bin local histogram with a window of size 9 × 9 
aggregated by averaging; (111–120) ten-bin histogram of all tissue edge tiles;  
(121–130) ten-bin local histogram of edges with a linear window of size 3 × 3 
aggregated by max-pooling; (131–140) ten-bin local histogram of edges with a linear 
window of size 3 × 3 aggregated by averaging; (141–150) ten-bin local histogram 
of edges with a linear window of size 5 × 5 aggregated by max-pooling; (151–160) 
ten-bin local histogram of edges with a linear window of size 5 × 5 aggregated by 
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averaging; (161–170) ten-bin local histogram of edges with a linear window of size 
7 × 7 aggregated by max-pooling; and (171–180) ten-bin local histogram of edges 
with a linear window of size 7 × 7 aggregated by averaging. The random forest was 
learned of the validation set instead of the training set to avoid over-fitting.

RNN-based slide integration. Model f mapping a tile to class probability 
consists of two parts: a feature extractor fF that transforms the pixel space to 
representation space, and a linear classifier fC that projects the representation 
variables into the class probabilities. The output of fF for the ResNet34 architecture 
is a 512-dimensional vector representation. Given a slide and model f, we can 
obtain a list of the S most interesting tiles within the slide in terms of positive class 
probability. The ordered sequence of vector representations e = e1, e2,…, eS is the 
input to an RNN along with a state vector h. The state vector is initialized with a 
zero vector. Then, for step i = 1, 2,…, S of the recurrent forward pass, the new state 
vector hi is given by equation (2):

= + +−h We W h bReLU( ) (2)i e i h i 1

where We and Wh are the weights of the RNN model. At step S, the slide 
classification is simply o = WohS, where Wo maps a state vector to class probabilities. 
With S = 1, the model does not recur and the RNN should learn the fC classifier. 
This approach can be easily extended to integrate information at multiple scales. 
Given models f20×, f10x and f5x trained at 20×, 10× and 5× magnifications, we obtain 
the S most interesting tiles from a slide by averaging the prediction of the three 
models on tiles extracted at the same center pixel but at different magnifications. 
Now, the inputs to the RNN at each step i are e20x,i, e10x,i, e5x,i, and the state vector 
hi−1. The new state vector is then given by equation (3):

= +
+ + +

× × × ×

× × −

h W e W e
W e W h b

ReLU(
)

(3)i i i

i h i

20 20 , 10 10 ,

5 5 , 1

In all of the experiments, we used 128 dimensional vectors for the state 
representation of the recurrent unit, ten recurrent steps (S = 10), and weighted the 
positive class to give more importance to the sensitivity of the model. All RNN 
models were trained with cross-entropy loss and SGD with a batch size of 256.

MIL exploratory experiments. We performed a set of exploratory experiments on 
the prostate dataset. At least five training runs were completed for each condition. 
The minimum balanced error on the validation set for each run was used to 
decide the best condition in each experiment. ResNet34 achieved the best results 
over other architectures tested. The relative balanced error rates with respect to 
ResNet34 were: +0.0738 for AlexNet, −0.003 for VGG11BN, +0.025 for ResNet18, 
+0.0265 for ResNet101 and +0.0085 for DenseNet201. Using a class-weighted loss 
led to better performance overall, and we adopted weights in the range of 0.80–0.95 
in subsequent experiments. Given the scale of our data, augmenting the data with 
rotations and flips did not significantly affect the results: the best balanced error 
rate on the model trained with augmentation was 0.0095 higher than without 
augmentation. During training, we weighted the false negative errors more heavily 
to obtain models with high sensitivity.

Visualization of feature space. For each dataset, we sampled 100 tiles from each 
test slide, in addition to its top-ranked tile. Given the trained 20× models, we 
extracted for each of the sampled tiles the final feature embedding before the 
classification layer. We used t-distributed stochastic neighbor embedding (t-SNE)46 
for dimensionality reduction to two dimensions.

Pathology analysis of model errors. A genitourinary subspecialized pathologist 
(V.E.R.) reviewed the prostate cases. A dermatopathology subspecialized 
pathologist (K.J.B.) reviewed the BCC cases. Two breast subspecialized pathologists 
(E.B. and M.G.H.) jointly reviewed the breast cases. For each tissue type, the 
respective pathologists were presented with all of the test errors and a randomly 
selected sample of 20 true positives. They were tasked with evaluating the 
model’s predictions and interpreting possible systematic error modalities. During 
the analysis, the pathologists had access to the model’s prediction and the full 
pathology report for each case.

CAMELYON16 experiments. The CAMELYON16 dataset consists of 400 total 
patients for whom a single WSI is provided in a tag image file format (TIFF). 
Annotations are given in extensible markup language (XML) format, one per each 
positive slide. For each annotation, several regions, defined by vertex coordinates, 
may be present. Since these slides were scanned at a higher resolution than the 

slides scanned at MSK, a tiling method was developed to extract tiles containing 
tissue from both inside and outside the annotated regions at MSK’s 20× equivalent 
magnification (0.5 µm pixel−1) to enable direct comparison with our datasets. 
This method generates a grid of possible tiles, excludes background via Otsu 
thresholding and determines whether a tile is inside an annotation region by 
solving a point in polygon problem.

We used 80% of the training data to train our model, and we left 20% for 
model selection. We extracted at random 1,000 tiles from each negative slide, and 
1,000 negative tiles and 1,000 positive tiles from the positive slides. A ResNet34 
model was trained augmenting the dataset on the fly with 90° rotations, horizontal 
flips and color jitter. The model was optimized with SGD. The best-performing 
model on the validation set was selected. Slide-level predictions were generated 
with the random forest aggregation approach explained before and trained on the 
entire training portion of the CAMELYON16 dataset. To train the random forest 
model, we exhaustively tiled with no overlap the training slides to generate the 
tumor probability maps. The trained random forest was then evaluated on the 
CAMELYON16 test dataset and on our large breast lymph node metastasis  
test datasets.

Data protection. This project was governed by an Institutional Review Board-
approved retrospective research protocol under which consent/authorization was 
waived before research was carried out. All data collection, research and analysis 
was conducted exclusively at MSK.

All publicly shared WSIs were de-identified and do not contain any protected 
health information or label text.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The publicly shared MSK breast cancer metastases dataset is available at  
http://thomasfuchslab.org/data/. The dataset consists of 130 de-identified WSIs of 
axillary lymph node specimens from 78 patients (see Extended Data Fig. 8). The 
tissue was stained with hematoxylin and eosin and scanned on Leica Biosystems 
AT2 digital slide scanners at MSK. Metastatic carcinoma is present in 36 whole 
slides from 27 patients, and the corresponding label is included in the dataset.
The remaining data that support the findings of this study were offered to editors 
and peer reviewers at the time of submission for the purposes of evaluating 
the manuscript upon request. The remaining data are not publicly available, in 
accordance with institutional requirements governing human subject privacy 
protection.

Code availability
The source code of this work can be downloaded from https://github.com/
MSKCC-Computational-Pathology/MIL-nature-medicine-2019.
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Extended Data Fig. 1 | Geographical distribution of the external consultation slides submitted to MSKCC. We included in our work a total of 17,661 
consultation slides: 17,363 came from other US institutions located across 48 US states, Washington DC and Puerto Rico; 248 cases came from 
international institutions spread across 44 countries in all continents. a, Distribution of consultation slides coming from other US institutions. Top, 
geographical distribution of slides in the continental United States. Red points correspond to pathology laboratories. Bottom, consultation slides 
distribution per state (including Washington DC and Puerto Rico). b, Distribution of consultation slides coming from international institutions. Top, 
geographical locations of consultation slides across the world (light gray, countries that did not contribute slides; light blue, countries that contributed 
slides; dark blue, United States). Bottom, distribution of external consultation slides per country of origin (excluding the United States).
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Extended Data Fig. 2 | MIL model classification performance for different cancer datasets. Performance on the respective test datasets was measured 
in terms of AUC. a, Best results were achieved on the prostate dataset (n = 1,784), with an AUC of 0.989 at 20× magnification. b, For BCC (n = 1,575), 
the model trained at 5× performed the best, with an AUC of 0.990. c, The worst performance came on the breast metastasis detection task (n = 1,473), 
with an AUC of 0.965 at 20×. The axillary lymph node dataset is the smallest of the three datasets, which is in agreement with the hypothesis that larger 
datasets are necessary to achieve lower error rates on real-world clinical data.
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Extended Data Fig. 3 | t-SNE visualization of the representation space for the BCC and axillary lymph node models. Two-dimensional t-SNE projection of 
the 512-dimensional representation space were generated for 100 randomly sampled tiles per slide. a, BCC representation (n = 144,935). b, Axillary lymph 
nodes representation (n = 139,178).
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Extended Data Fig. 4 | Performance of the MIL-RF model at multiple scales on the prostate dataset. The MIL model was run on each slide of the test 
dataset (n = 1,784) with a stride of 40 pixels. From the resulting tumor probability heat map, hand-engineered features were extracted for classification 
with the random forest (RF) model. The best MIL-RF model (ensemble model; AUC = 0.987) was not statistically significantly better than the MIL-only 
model (20× model; AUC = 0.986; see Fig. 3), as determined using DeLong’s test for two correlated ROC curves.
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Extended Data Fig. 5 | ROC curves of the generalization experiments summarized in Fig. 5. a, Prostate model trained with MIL on MSK in-house slides 
tested on: (1) an in-house slides test set (n = 1,784) digitized on Aperio scanners; (2) an in-house slides test set digitized on a Philips scanner (n = 1,274); 
and (3) external slides submitted to MSK for consultation (n = 12,727). b,c, Comparison of the proposed MIL approach with state-of-the-art fully 
supervised learning for breast metastasis detection in lymph nodes. For b, the breast model was trained on MSK data with our proposed method  
(MIL-RNN) and tested on the MSK breast data test set (n = 1,473) and on the test set of the CAMELYON16 challenge (n = 129), and achieved AUCs of 
0.965 and 0.895, respectively. For c, the fully supervised model was trained on CAMELYON16 data and tested on the CAMELYON16 test set (n = 129), 
achieving an AUC of 0.930. Its performance dropped to AUC = 0.727 when tested on the MSK test set (n = 1,473).
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Extended Data Fig. 6 | Decision support with the BCC and breast metastases models. For each dataset, slides are ordered by their probability of being 
positive for cancer, as predicted by the respective MIL-RNN model. The sensitivity is computed at the case level. a, BCC (n = 1,575): given a positive 
prediction threshold of 0.025, it is possible to ignore roughly 68% of the slides while maintaining 100% sensitivity. b, Breast metastases (n = 1,473):  
given a positive prediction threshold of 0.21, it is possible to ignore roughly 65% of the slides while maintaining 100% sensitivity.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles NaTurE MEDIcInE

Extended Data Fig. 7 | Example of a slide tiled on a grid with no overlap at different magnifications. A slide represents a bag, and the tiles constitute the 
instances in that bag. In this work, instances at different magnifications are not part of the same bag. mpp, microns per pixel.
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Extended Data Fig. 8 | The publicly shared MSK breast cancer metastases dataset is representative of the full MSK breast cancer metastases test 
set. We created an additional dataset of the size of the test set of the CAMEYON16 challenge (130 slides) by subsampling the full MSK breast cancer 
metastases test set, ensuring that the models achieved similar performance for both datasets. Left, the model was trained on MSK data with our proposed 
method (MIL-RNN) and tested on: the full MSK breast data test set (n = 1,473; AUC = 0.968), the public MSK dataset (n = 130; AUC = 0.965); and the test 
set of the CAMELYON16 challenge (n = 129; AUC = 0.898). Right, the model was trained on CAMELYON16 data with supervised learning18 and tested on: 
the test set of the CAMELYON16 challenge (n = 129; AUC = 0.932); the full MSK breast data test set (n = 1,473; AUC = 0.731); and the public MSK dataset 
(n = 130; AUC = 0.737). Error bars represent 95% confidence intervals for the true AUC calculated by bootstrapping each test set.
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Software and code
Policy information about availability of computer code

Data collection Glass slides were digitized with Leica Aperio AT2 scanners and Philips Ultra Fast Scanner at a resolution of 0.5 microns per pixel.

Data analysis The algorithms were written in python. We used openslide (version 3.4.1) to access the whole slide images, and pytorch (version 1.0) to 
train deep learning models. 
R (version 3.3.3) was used for the statistical analysis of the results.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The publicly shared MSK breast cancer metastases dataset is available at http://thomasfuchslab.org/data/ . The dataset consists of 130 de-identified whole slide 
images of axillary lymph node specimens from 78 patients (see Supplemental Figure 6). The tissue was stained with H&E and scanned on Leica Biosystems AT2 
digital slide scanners at Memorial Sloan Kettering Cancer Center. Metastatic carcinoma is present in 36 whole slides from 27 patients and the corresponding label is 
included in the dataset. 
The remaining data that supports the findings of this study were offered to editors and peer reviewers at the time of submission for the purposes of evaluating the 
manuscript upon request. The remaining data is not publicly available in accordance to institutional requirements governing human subject privacy protections.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculations were performed. Within the enrollment years listed in Figure 1a all cases with digitizes whole slides were included 
in the study without data curation.

Data exclusions Less than ten whole slide images were excluded because of excessive pen ink marks present on the image. The exclusion criteria was pre-
established.

Replication Models were trained five times with each condition to ensure the stability of the training procedure. Replication was successful for all 
conditions for which test results were reported.

Randomization Patients were randomly divided in three groups: training, validation, and test sets. No other covariates were controlled for.

Blinding Since our experiments are based on digitized pathology slides, blinding is not necessary.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Digital images of microscope slides from patients that were diagnosed at MSKCC over a period of at least 1 year and up to 5 
years depending on the tissue type.

Recruitment No patient recruitment was performed. All digital images that were available for the pre-established collecting period were 
analyzed.

Ethics oversight Memorial Sloan Kettering Cancer Center

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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