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Abstract—Respiratory diseases are among the most common
causes of severe illness and death worldwide. Prevention and
early diagnosis are essential to limit or even reverse the trend
that characterizes the diffusion of such diseases. In this regard,
the development of advanced computational tools for the analysis
of respiratory auscultation sounds can become a game changer
for detecting disease-related anomalies, or diseases themselves. In
this work, we propose a novel learning framework for respiratory
auscultation sound data. Our approach combines state-of-the-art
feature extraction techniques and advanced deep-neural-network
architectures. Remarkably, to the best of our knowledge, we are
the first to model a recurrent-neural-network based learning
framework to support the clinician in detecting respiratory
diseases, at either level of abnormal sounds or pathology classes.
Results obtained on the ICBHI benchmark dataset show that
our approach outperforms competing methods on both anomaly-
driven and pathology-driven prediction tasks, thus advancing the
state-of-the-art in respiratory disease analysis.

Index Terms—respiratory sound data, MFCCs, deep learning

I. INTRODUCTION

With the term “the big five”, the World Health Organization

identifies five respiratory diseases among the most common

causes of severe illness and death worldwide, namely chronic

obstructive pulmonary disease (COPD), asthma, acute lower

respiratory tract infection (LRTI), tuberculosis, and lung can-

cer [1]. The number of people affected by COPD reaches 65

million, with about 3 million deaths per year, making it the

third leading cause of death worldwide [2], [3]. Asthma is a

common chronic disease that is estimated to affect as many

as 339 million people worldwide [4], and it is considered the

most common chronic childhood disease. Another widespread

disease which especially affects children under 5 years old

is pneumonia [5]. The Mycobacterium tuberculosis agent has

infected over 10 million people, and it is considered the most

common lethal infectious disease [6]. Yet, lung cancers kill

around 1.6 million people every year [7].

Prevention, early diagnosis, and treatment are key factors

to limit the spread of such diseases and their negative impact

on the length and quality of life. Lung auscultation is an

essential part of the respiratory examination and is helpful

in diagnosing various disorders, such as anomalies that may

occur in the form of abnormal sounds (e.g., crackles and

wheezes) in the respiratory cycle. When performed through

advanced computational methods, a deep analysis of such

sounds can be of great support to the physician, which could

result in enhanced detection of respiratory diseases.

In this context, machine learning techniques have shown

to provide an invaluable computational tool for detecting

disease-related anomalies in the early stages of a respira-

tory dysfunctions (e.g., [8]–[10]). In particular, deep learning
(DL) based methods promise to support enhanced detection

of respiratory diseases from auscultation sound data, given

their well-recognized ability of learning complex non-linear

functions from large, high-dimensional data. In recent years,

this has led DL methods to set state-of-the-art performances in

a wide range of domains, such as machine translation, image

segmentation, speech and signal recognition.

In this work, we aim to advance the state-of-the-art in re-

search on machine-learning detection of respiratory anomalies

and diseases through the use of advanced DL architectures.

A major contribution of our work is the definition of a learn-

ing framework based on Recurrent Neural Network (RNNs)

models to effectively handle respiratory disease prediction

problems at both anomaly- and pathology-levels. Unlike other

types of DL networks, RNNs are designed to effectively

discover the time-dependent patterns from sound data. To the

best of our knowledge, the use of such models to address

the above problems has not been adequately studied so far.

We also contribute with a preprocessing methodology for

a flexible extraction of core groups of cepstral features to

feed the inputs to an RNN model. Remarkably, our RNN

models were trained and tested using the ICBHI Challenge
dataset, which provides an unprecedented, reproducible and

standardized benchmark on which new algorithms can be

fairly evaluated and compared [11]. Results obtained on the

ICBHI benchmark, according to different assessment criteria,

highlight the superiority of our RNN-based methods against

all selected competitors that participated to the ICBHI Chal-

lenge, as well as against a further competitor based on a DL

framework.

II. THE ICBHI CHALLENGE

The ICBHI Challenge dataset [11] was built in the con-

text of a challenge on respiratory data analysis organized in

conjunction with the 2017 Int. Conf. on Biomedical Health

Informatics (ICBHI). The dataset contains audio samples that

were collected independently by two research teams in two

different countries. The data acquisition process was char-

acterized by varying recording equipment, microphone chest

position, environmental noise, etc. Such variability raised the
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level of difficulty of the challenge by introducing several

sources of noise and unpredictability.

Annotations. The ICBHI sound data were provided with

two types of annotation: i) for each respiratory cycle, whether

or not crackles and/or wheezes are present, and ii) for every

patient, whether or not a specific pathology from a set of

predetermined categories is present. As we shall discuss in

Sect. III, all the participants to the ICBHI Challenge focused

on the first, finer-grain type of annotations. To advance re-

search on respiratory data analysis, in this work we also

take the opportunity of exploiting the ICBHI Challenge to

assess and comparatively evaluate our proposed framework on

prediction tasks at either level of anomalies and pathologies.

A. Abnormal sounds

Crackles and wheezes are commonly referred to by domain

experts as criteria to assess the health status of a patient’s

respiratory system. We adopt the definitions provided by The

European Respiratory Society (ERS) on Respiratory Sounds

and described in [12].

Crackles are discontinuous, explosive, and non-musical ad-

ventitious lung sounds, which are usually classified as fine
or coarse crackles based on their duration, loudness, pitch,

timing in the respiratory cycle, and relation to coughing

and changing body position. The two types of crackles are

normally distinguished based on their duration: longer than

10 ms for coarse crackles, and shorter than 10 ms for fine

crackles. The frequency range of crackles is 60-2000 Hz, with

most informative frequencies up to 1200 Hz [13].

Conversely, wheezes are high-pitched continuous, musical,

and adventitious lung sounds, usually characterized by a

dominant frequency of 400 Hz (or higher) and sinusoidal

waveforms. Although the standard definition of continuous

sound includes a duration longer than 250 ms, a wheeze

does not necessarily extend beyond 250 ms and is usually

longer than 80-100 ms. Severe obstruction of the intrathoracic

lower airway or upper airway obstruction can be associated

with inspiratory wheezes. Asthma and chronic obstructive pul-

monary diseases (COPD) patients develop generalized airway

obstruction. However, wheezing could even be detected in a

healthy person towards the end of expiration after forceful

expirations [13].

B. Respiratory data

The ICBHI Challenge database consists of a total of 5.5

hours of recordings containing 6898 respiratory cycles, of

which 1864 contain crackles, 886 contain wheezes, and 506

contain both crackles and wheezes, in 920 annotated audio

samples from 126 subjects.

A single-channel respiratory sound is composed of a certain

number of cycles, which in turn include four main compo-

nents, two pauses, and two distinctive patterns. Discarding

fine-grain variations, mostly due to the conversion of air vibra-

tions to electrical signal, a respiratory cycle is conventionally

described as follows: it starts from the inspiratory phase, which

is characterized by a lower amplitude and a regular pattern,

then it follows with an expiratory phase, which shows one or

multiple peaks, a decreasing amplitude pattern, and is usually

characterized by a higher average energy.

As previously mentioned, the respiratory cycles were an-

notated by domain experts to state the presence of crackles,

wheezes, a combination of them, or no adventitious respiratory

sounds. More in detail, the annotation style format includes

the beginning of the respiratory cycle(s), as well as the end of

the respiratory cycle(s), the presence or absence of crackles,

and the presence or absence of wheezes. The recordings

were collected using heterogeneous equipment, with duration

ranging from 10 s to 90 s. The average duration of a respiratory

cycle is 2.7 s, with a standard deviation of about 1.17 s; the

median duration is about 2.54 s, whereas the duration ranges

from 0.2 s to above 16 s. Moreover, wheezes are characterized

by an average duration of about 600 ms, with a relatively

high variance, and a minimum and maximum duration value

ranging between 26 ms and 19 s; conversely, crackles are

characterized by an average duration of about 50 ms, smaller

variance, and a minimum and maximum duration values of

3 ms and 4.88 s, respectively.

III. RELATED WORK

We organize our discussion of related work into two parts,

namely anomaly-driven prediction and pathology-driven pre-

diction methods, depending on the target of classification of

patients affected by respiratory diseases.

Anomaly-driven prediction. In [8], the authors proposed

a method based on hidden Markov models and Gaussian

mixture models. The preprocessing phase includes a noise

suppression step which relies on spectral subtraction [8].

The input of the model consists of Mel-frequency cepstral

coefficients (MFCCs) extracted in the range between 50 Hz

and 2,000 Hz in combination with their first derivatives.

The method achieves performance results up to 39.37%, in

compliance with the ICBHI score defined in [14]. The authors

also tested an ensemble of 28 classifiers applying majority

voting; this approach led to a slight improvement of the

performance of a single classifier, though at the expense of

ten times greater computational burden.

A method based on standard signal-processing techniques

is described in [9]. The preprocessing phase here consists of

a band-pass filter which is in charge of removing undesired

frequencies due to heart sounds and other noise components.

Then, the recording segment is separated into three channels,

crackle, wheeze, and background noise, through resonance-

based decomposition [15]. Subsequently, time-frequency and

time-scale features are extracted by applying short-time

Fourier transform to each individual channel. The resulting

features are finally aggregated and fed into a support vector

machine classifier. This method achieves 49.86% accuracy and

an ICBHI score up to 69.27%.

The MNRNN method proposed in [10] is designed to

perform end-to-end classification with minimal preprocessing

needs. MNRNN consists of three main components: i) a

noise classifier based on two-stacked recurrent neural networks
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Fig. 1. Illustration of our RNN-based framework for the prediction of respiratory anomalies and pathologies.

which predicts noise label for every input frame, ii) an

anomaly classifier, and iii) a mask mechanism which is in

charge of selecting only noiseless frames to feed into the

anomaly classifier. MNRNN achieves 85% accuracy in the

detection of noisy frames, and ICBHI score of 65%.

The boosted decision tree model proposed in [16] utilizes

two different types of features: MFCCs and low-level features

extracted with the help of the Essentia library [17]. This

method was mainly evaluated on a binary prediction setting

(i.e., healthy or unhealthy), achieving accuracy up to 85%.

Pathology-driven prediction. Differently from the above-

mentioned methods, in our earlier work [18] we focused on

the prediction task from the perspective of the pathology

affecting the patient. Another key difference regards the input

unit from which the coefficients have been extracted, which

corresponds to a whole recording, rather than a respiratory

cycle. The method in [18] is based on Convolutional Neural

Networks (CNNs) and MFCCs coefficients, and exploits the

class imbalance technique SMOTE.

In this work, we tackle the anomaly-driven prediction prob-

lem, as well as the more challenging pathology-driven one.

Similarly to [10], we define our method upon recurrent neural

networks, but differently from it, we exploit the whole ICBHI

dataset without omitting frames characterized by a high level

of noise. In addition, like [8], [16], [18], our method also

relies on MFCCs for the extraction of significant features

from the respiratory sounds; however, the use of an RNN

architecture allows our model to benefit from the discovery of

time-dependent patterns, which otherwise would be ignored.

IV. OUR PROPOSED LEARNING FRAMEWORK

In this section, we propose a novel framework which

leverages on a particularly suitable type of deep neural net-

work architecture, namely recurrent neural networks (RNNs).

Unlike existing approaches, our framework is designed to

handle a respiratory-disease prediction task at anomaly-level

(crackles and wheezes) or at pathology-level — chronic dis-

eases (COPD, bronchiectasis, asthma) and non-chronic dis-

eases (Upper and Lower Respiratory Tract Infection (URTI

and LRTI), pneumonia, and bronchiolitis) — at different

resolutions (i.e., two-class or multi-class problems). Figure 1

provides a schematic illustration of the workflow of our

framework. In the following, we motivate and describe the use

of RNNs, then we discuss in detail the preprocessing phase,

and the criteria used in our evaluation.

A. Recurrent Neural Networks

Traditional neural network architectures are based on the

assumption that all inputs are sequentially independent. How-

ever, for many tasks, such as time-series analysis or natural

language processing, in which the relations between consec-

utive training instances play a key role, this assumption is

incorrect and could even be detrimental.

The basic idea behind RNNs is to enable a network to

remember past data with the goal of developing better models

by leveraging sequential information [19]. The term “recur-

rent” suggests that this type of architecture is characterized by

repeatedly performing the same action to the input sequence.

However, the key distinguishing feature of RNNs is that

the output depends on the current input as well as on the

previously processed samples. The ability of combining the

informative content of the i-th sample and the previously

processed ones can be ascribed as the capacity to “remember”

a certain amount of samples back in time. In other words,

RNNs can retain information about the past, enabling it to

discover temporal correlations between events that are far

away from each other in the data.

Early models of RNNs suffered from both exploding and
vanishing gradient problems [20]. As advanced architectures

of RNNs, Long Short-Term Memory (LSTM) and Gated Re-
current Unit (GRU) were designed to successfully address the

gradient problems and emerged among the other architectures.

In this work, we profitably exploit the LSTM and GRU

models in our prediction framework. Furthermore, we also

employ the bidirectional version of both LSTM and GRU,

dubbed BiLSTM and BiGRU, respectively, which differ from

the unidirectional ones since they connect two hidden layers

of opposite directions to the same output; in this way, the

output layer can get information from past (backward) and

future (forward) states simultaneously.

Setting. In both prediction tasks, we used the same

configuration with 2 layers of 256 cells each with tanh
activation function, under a Keras implementation on a Ten-
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TABLE I
CONFIGURATIONS FOR THE GENERATION OF RNN INPUT FRAMES FROM

RESPIRATORY CYCLES

Setting
id

Window size
[ms]

Window step
[ms]

#windows Frame size
[ms]

#features

S1 500 500 1 500 13
S2 500 250 1 500 13
S3 250 250 1 250 13
S4 50 50 5 250 65
S5 50 25 5 150 65
S6 50 50 10 500 130
S7 50 25 10 275 130

sorflow backend.1 To prevent overfitting, we introduced both

regular and recurrent dropout [21]. In this regard, we tested

different values for regular and recurrent dropout and found

that the use of smaller values of recurrent dropout, w.r.t. the

regular one, can lead to slightly better results. However, given

the negligible nature of the performance improvement, we

utilized the same value for both types of dropout, ranging

between 30 and 60%. In addition, we leveraged the batch
normalization [22] technique, with batch size equal to 32.

Moreover, each of our RNN models was trained using the

ADAM [23] optimization algorithm with start-learning rate

set to 0.002. This is a computationally efficient technique for

gradient-based optimization of stochastic objective functions,

which has shown to be particularly useful when dealing with

large datasets or high-dimensional parameter space. Finally,

we set 100 training epochs for both the prediction tasks.

B. Preprocessing

We designed three steps of preprocessing of the ICBHI

sound data: frame composition, feature extraction, and feature
normalization. We elaborate on each of these steps next.

1) Frame composition: In the first step of our preprocessing

scheme, we segment every respiratory cycle based on a sliding

window of variable size, as described in Table I. Subsequently,

for each portion (i.e., window) of the respiratory cycle, we

extract the Mel-Frequency Cepstral Coefficients (MFCCs) (cf.

Sect. IV-B2) and finally concatenate the coefficients of each

window. The resulting group of cepstral features constitutes

a frame, which represents the basic unit of data fed into the

recurrent neural network.

As shown in Table I, we devised 7 configurations by varying

the size of the window, the step between consecutive windows,

and the number of windows concatenated together after the

extraction of the MFCCs. Note that the settings S1, S3, S4,

and S6 are characterized by window size and window step of

equal size, which results in a null overlap of two consecutive

windows, and produces non-overlapping partitioning of the

whole respiratory cycle. Conversely, the remaining settings

correspond to a window step of half the size of the window,

resulting in a 50% overlap between consecutive windows.

2) Feature extraction: For the extraction of significant

features, we rely on Mel-Frequency Cepstral Coefficients

(MFCCs) [24]. In speech recognition, MFCC model has been

1https://keras.io/, https://www.tensorflow.org/

widely and successfully used thanks to its ability in represent-

ing the speech amplitude spectrum in a compact form.

In our framework, the extraction of MFCCs starts by

dividing the input signal into frames of equal length and

then applying a window function, such as the Hamming

window to reduce spectral leakage. Next, for each frame, we

generate a cepstral feature vector and apply the direct Fourier

transform (DFT). While information about the phase of the

signal is discarded, the amplitude spectrum is retained and

subject to logarithmic transformation, in order to mimic the

way the human brain perceives the loudness of a sound [25].

Moreover, to smooth the spectrum and emphasize perceptually

meaningful frequencies, we aggregate the spectral components

into a lower number of frequency bins. Finally, we apply the

discrete cosine transform (DCT) to decorrelate the filter bank

coefficients and yield a compressed representation.

3) Feature normalization: Normalizing the input to a neural

network is known to make training faster by limiting the

chances of getting stuck in local minima (i.e., faster approach-

ing to global minima at error surface) [26]. Within this view,

we leverage two classic normalization techniques, Min-Max

normalization and Z-score normalization (i.e., standardiza-

tion). Recall that Z-score transformation of a feature value

is calculated by subtracting the population mean by it and

dividing this difference by the population standard deviation.

Observed values above the mean have positive standard scores,

while values below the mean have negative standard scores.

By contrast, Min-Max normalization (i.e., subtracting the

minimum of all values from each specific one and dividing the

difference by the difference between maximum and minimum)

scales feature values to a fixed range [0,1].

C. Evaluation and assessment criteria

For both prediction tasks under consideration, we di-

vided the ICBHI dataset into 80% for training and 20%

for testing. We used two groups of assessment crite-

ria: i) ICBHI-specific criteria, based on micro-averaging,

as required by the ICBHI Challenge, and ii) macro-
averaging based criteria. The former group includes sen-
sitivity and specificity, and their average, named ICBHI-
score. Following the procedure described in [11], [14]:

Sensitivity = Ccrackles or wheezes/Ncrackles or wheezes, for

the 2-class testbed, Sensitivity = (Ccrackles + Cwheezes +
Cboth)/(Ncrackles + Nwheezes + Nboth), for the 4-class

testbed, and Specificity = Cnormal/Nnormal, where Cs

and Ns values denote the number of correctly recog-

nized instances and the total number of instances, re-

spectively, that belong to the class crackles, wheezes,

both (resp. crackles or wheezes), in the 4-class (resp.

2-class) testbed, or normal. Analogous definitions follow

for the evaluation of pathology-driven prediction; for in-

stance, in the 3-class testbed: Sensitivity = (Cchronic +
Cnon-chronic)/(Nchronic + Nnon-chronic) and Specificity =
Chealthy/Nhealthy. We also considered macro-averaged accu-
racy, precision, recall (sensitivity), and F1-score, i.e., each

of such scores is obtained as the average score over all
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TABLE II
ACCURACY PERFORMANCE BY LSTM MODELS IN THE ANOMALY-DRIVEN

PREDICTION TASK, FOR THE BINARY AND FOUR-CLASS TESTBEDS.

Method Un-normalized data Min-Max Normalization Z-score Normalization
2-Class 4-Class 2-Class 4-Class 2-Class 4-Class

LSTM-S1 0.74 0.69 0.68 0.64 0.78 0.72
LSTM-S2 0.75 0.67 0.68 0.68 0.77 0.73
LSTM-S3 0.75 0.69 0.73 0.68 0.81 0.74
LSTM-S4 0.76 0.70 0.77 0.73 0.79 0.74
LSTM-S5 0.77 0.69 0.79 0.72 0.79 0.72
LSTM-S6 0.78 0.68 0.77 0.70 0.77 0.73
LSTM-S7 0.76 0.70 0.79 0.72 0.80 0.72

classes. For instance, the 3-class pathology-driven evaluation

accuracy is defined as Accuracy = (1/3)(Cchronic/Nchronic+
Cnon-chronic/Nnon-chronic + Chealthy/Nhealthy).

V. EXPERIMENTAL RESULTS

Plan of experiments and goals. We organize the presen-

tation of experimental results into four sections, which corre-

spond to our main goals of evaluation. First, we investigated

the impact of feature normalization on the prediction perfor-

mance of our framework (Sect. V-A). Second, we compared

the different types of RNNs considered in our framework,

i.e., LSTM and GRU models, in their unidirectional and bidi-

rectional architectures (Sect. V-B). Third, we comparatively

evaluated our approach to other methods in the context of the

ICBHI Challenge, i.e., for the anomaly-driven prediction task

(Sect. V-C), and fourth, we conducted an analogous evaluation

stage for the pathology-driven prediction task (Sect. V-D).

A. Impact of feature normalization on RNN performance

We analyzed whether and to what extent normalization of

the MFCC features is beneficial for the prediction performance

of our framework. Table II reports accuracy results corre-

sponding to the LSTM model, for various frame-composition

settings, in the anomaly-driven prediction task, for both the

binary testbed (i.e., presence/ absence of anomalies) and four-

class testbed (i.e., normal, presence of crackles, presence of

wheezes, presence of both anomalies).

Looking at the table, there is a clear evidence that the use

of Z-score normalization generally leads to higher prediction

accuracy, with significant improvements w.r.t. both min-max

normalization and non-normalization of the features. This

particularly holds for the four-class testbed.

The above finding was also confirmed by the other types of

RNN used in our framework, with relative differences across

the settings that revealed to be very similar to those observed

for the LSTM model. For this reason, in the following we will

present results corresponding to Z-score normalized features.

B. Comparison of RNN models

Figure 2 shows the accuracy obtained by the four different

types of RNN models considered in our framework, i.e.,

LSTM, GRU, BiLSTM and BiGRU, for all frame-composition

settings described in Table I.

We observe that all architectures lead to relatively close

performance, ranging between 0.70 and 0.74 across the dif-

ferent settings. Overall, the largest differences correspond to

Fig. 2. Comparison of RNN models in four-class anomaly-driven prediction

settings S4 and S1, whereby the BiLSTM model behaves

alternately as the worst and the best solution, respectively.

Also, the unidirectional GRU model tends to perform worse

than the other models. In general, the LSTM models provide

consistently better results in most cases, though at the expense

of memory and training efficiency; in this regard, using the

binary anomaly-driven prediction as a case in point, the time

required to complete the training composed of 100 epochs

was about 13 minutes for LSTM, 11 minutes for GRU, 26

minutes for BiLSTM, and 22 minutes for BiGRU.2 Due to

space limitations, in the following we will present results

obtained by the use of the LSTM model in our framework.

C. Comparison with the ICBHI Challenge competitors

We compared our approach to methods that participated to

the ICBHI Challenge (Sect. III). In addition, we also included

the CNN-based method in [18], which was not previously

tested on the anomaly-driven prediction task.

Results in Table III indicate that our LSTM models clearly

outperfom all the competitors in terms of all three criteria.

Note that the frame-composition settings that correspond to

the best ICBHI-score in the challenge (i.e., 73%) are S2, S3

and S4, which are characterized by a different frame-size

(i.e., 500, 250, and 50 ms), with total number of MFCCs

equal to 13, 13, and 65, respectively. It should be noted

that the relative difference in terms of ICBHI-score w.r.t. the

other frame-composition settings is just 1-2%, which indicates

robustness of our LSTM-based framework to a crucial step in

the preprocessing of respiratory sound data.

D. Performance on the pathology-driven prediction tasks

Table IV summarizes performance results obtained by our

LSTM-based framework against the CNN-based competi-

tor [18] on the pathology-driven prediction task, in both

binary (i.e., healthy or unhealthy) and ternary (i.e., healthy,

chronic, or non-chronic diseases) fashion.

Looking at the results for the binary testbed, the best overall

performance is achieved by our LSTM-based methods, in

2Experiments were carried out on a GNU/Linux (Mint 18) machine with
Intel i7-3960X CPU and 64 GB RAM.
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TABLE III
ICBHI CHALLENGE RESULTS ON THE DETECTION OF CRACKLES AND

WHEEZES (FOUR-CLASS ANOMALY-DRIVEN PREDICTION)

Method Specificity Sensitivity ICBHI Score
Boosted Tree [16] 0.78 0.21 0.49

CNN [18] 0.77 0.45 0.61
HNN [8] na na 0.39

MNRNN [10] 0.74 0.56 0.65
STFT+Wavelet [9] 0.83 0.55 0.69

LSTM-S1 0.81 0.62 0.71
LSTM-S2 0.82 0.64 0.73
LSTM-S3 0.84 0.64 0.74
LSTM-S4 0.83 0.64 0.73
LSTM-S5 0.81 0.62 0.71
LSTM-S6 0.84 0.60 0.72
LSTM-S7 0.85 0.62 0.74

TABLE IV
PERFORMANCE OF OUR LSTM-BASED METHODS VS. CNN-BASED

METHOD, IN THE PATHOLOGY-DRIVEN CLASSIFICATION TASKS.

#classes Method Accuracy Precision Recall F1-score Specif. Sensitiv. ICBHI
score

2 CNN [18] 0.83 0.95 0.83 0.88 0.78 0.97 0.88
2 LSTM-S1 0.98 0.92 0.85 0.88 0.70 1.00 0.85
2 LSTM-S3 0.98 0.93 0.87 0.89 0.77 0.99 0.88
2 LSTM-S4 0.99 0.95 0.92 0.94 0.79 1.00 0.89
2 LSTM-S6 0.98 0.92 0.88 0.90 0.80 0.99 0.90
2 LSTM-S7 0.99 0.94 0.91 0.92 0.82 0.99 0.91
3 CNN [18] 0.82 0.87 0.82 0.84 0.76 0.89 0.83
3 LSTM-S1 0.97 0.91 0.88 0.89 0.75 0.97 0.86
3 LSTM-S3 0.97 0.92 0.88 0.90 0.80 0.98 0.89
3 LSTM-S4 0.98 0.91 0.90 0.90 0.80 0.98 0.89
3 LSTM-S6 0.97 0.91 0.87 0.89 0.82 0.98 0.90
3 LSTM-S7 0.98 0.93 0.90 0.91 0.82 0.98 0.90

particular with frame-composition settings S4 and S7, which

allow us to outperform the CNN-based method with gains up

to 16% accuracy, 9% recall, 6% F1-score, 4% specificity, 3%

sensitivity, and 3% ICBHI-score. The ternary testbed results

strengthen the superiority of the LSTM-based methods vs. the

CNN-based one, in all cases. Again, settings S7 and S4 lead to

the best performance of our methods, which should be ascribed

by the beneficial effect due to higher number of features and

finer-grain windowing used to generate the RNN input frames.

VI. CONCLUSION AND FUTURE WORK

In this work, we developed a novel deep-learning framework

that originally integrates MFCC-based preprocessing of sound

data and advanced Recurrent Neural Network models for

the detection of respiratory abnormal sounds (crackles and

wheezes) and of chronic/non-chronic diseases. Our empirical

findings, drawn from an extensive evaluation conducted on

the ICBHI Challenge data and against different competitors,

suggest that our RNN-based framework advances the state-

of-the-art in two respiratory disease prediction tasks, i.e., at

anomaly-level and pathology-level.
Our pointers for future research include the use or mixing of

alternative DL architectures, and an investigation of the impact

of alternative representation models for the respiratory sounds

on the prediction performance of our framework. In particular,

we are interested in developing hybrid models that can take

advantage from a combination of time-series representation,

whether in time or frequency domain, and MFCCs.
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