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Abstract— We propose InSituNet, a deep learning based surrogate model to support parameter space exploration for ensemble sim-
ulations that are visualized in situ. In situ visualization, generating visualizations at simulation time, is becoming prevalent in handling
large-scale simulations because of the I/O and storage constraints. However, in situ visualization approaches limit the flexibility of
post-hoc exploration because the raw simulation data are no longer available. Although multiple image-based approaches have been
proposed to mitigate this limitation, those approaches lack the ability to explore the simulation parameters. Our approach allows flexi-
ble exploration of parameter space for large-scale ensemble simulations by taking advantage of the recent advances in deep learning.
Specifically, we design InSituNet as a convolutional regression model to learn the mapping from the simulation and visualization
parameters to the visualization results. With the trained model, users can generate new images for different simulation parameters
under various visualization settings, which enables in-depth analysis of the underlying ensemble simulations. We demonstrate the
effectiveness of InSituNet in combustion, cosmology, and ocean simulations through quantitative and qualitative evaluations.

Index Terms—In situ visualization, ensemble visualization, parameter space exploration, deep learning, image synthesis

1 INTRODUCTION

Ensemble simulations [64] have been playing an increasingly impor-
tant role in various scientific and engineering disciplines, such as com-
putational fluid dynamics, cosmology, and weather research. As the
computational power of modern supercomputers continues to grow, en-
semble simulations are more often conducted with a large number of
parameter settings in high spatial and/or temporal resolutions. Despite
the advances in accuracy and reliability of simulation results, how-
ever, two challenges have emerged: (1) I/O bottleneck for the move-
ment of the large-scale simulation data and (2) effective exploration
and analysis of the simulation parameters. In situ visualization [5,38],
which generates visualization at simulation time and stores only the
visualization results (that are much smaller than the raw simulation
data [1,2]) for post-hoc analysis, addresses the first challenge to some
extent. However, it also limits the flexibility of post-hoc exploration
and analysis, because the raw simulation data are no long available.

This study focuses on improving scientists’ ability in exploring the
in situ visualization results of ensemble simulations and extending
their capability in investigating the influence of different simulation
parameters. Several pioneering works have been proposed to facili-
tate post-hoc exploration of in situ visualization results. For example,
the Cinema framework [1, 2] visualized the simulation data from dif-
ferent viewpoints in situ and collected images to support post-hoc ex-
ploration. The volumetric depth images [21, 22] stored ray segments
with composited color and opacity values to enable post-hoc explo-
ration of arbitrary viewpoints for volume rendering. However, these
approaches focus more on extending the capability to explore the vi-
sual mapping parameters (e.g., transfer functions) and view parame-
ters (e.g., view angles) and have little consideration of the simulation
parameters, which are important in studying ensemble simulations.

Simulation parameter space exploration is not trivial, because the
relationship between the simulation parameters and outputs is often
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highly complex. The majority of existing simulation parameter space
exploration approaches [14, 65] resorted to visualizing a set of sim-
ulation parameters and outputs simultaneously and revealing the cor-
respondence between the parameters and outputs through visual link-
ings. However, these approaches often depend on the raw simulation
data that might not be available for large-scale ensemble simulations.
Moreover, these approaches have limited ability in inferring simula-
tion outputs with respect to new parameters. Hence, extra simulations
have to be conducted for new parameters, which cost enormous com-
putational resources for most scientific simulations.

In this work, we propose InSituNet, a deep learning based surro-
gate model to support parameter space exploration for ensemble sim-
ulations that are visualized in situ. Our work is based on the observa-
tion that images of high accuracy and fidelity can be generated with
deep neural networks for various image synthesis applications, such
as super-resolution [18, 32, 36], inpainting [46, 68], texture synthe-
sis [24, 71], and rendering [6, 19]. Specifically, we train InSituNet
to learn the end-to-end mapping from the simulation, visual mapping,
and view parameters to visualization images. The trained model en-
ables scientists to interactively explore synthesized visualization im-
ages for different simulation parameters under various visualization
settings without actually executing the expensive simulations. Our ap-
proach consists of three major steps.

1. In situ training data collection from ensemble simulations
Given ensemble simulations conducted with different simulation
parameters, we visualize the generated simulation data in situ
with various visual mapping and view parameters. The result-
ing visualization images and the corresponding parameters are
collected and used for the offline training of InSituNet.

2. Offline training of InSituNet Given the parameters and image
pairs, we train InSituNet (i.e., a convolutional regression model)
with cutting-edge deep learning techniques on image synthesis
to map simulation, visual mapping, and view parameters to visu-
alization images directly.

3. Interactive post-hoc exploration and analysis With the
trained InSituNet, we build an interactive visual interface that en-
ables scientists to explore and analyze the simulation from two
perspectives: (1) inferring visualization results for arbitrary pa-
rameter settings within the parameter space with InSituNet’s for-
ward propagations and (2) analyzing the sensitivity of different
parameters with InSituNet’s backward propagations.

We demonstrate the effectiveness of the proposed approach in com-
bustion, cosmology, and ocean simulations, and compare the predicted
images of InSituNet with the ground truth and alternative methods. In
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addition, we evaluate the influence of different hyperparameters of In-
SituNet (e.g., the choice of loss functions and the network architec-
tures) and provide guidance in configuring the hyperparameters. In
summary, the contributions of this paper are threefold:

• A deep image synthesis model (i.e., InSituNet) that enables post-
hoc parameter space exploration of ensemble simulations

• An interactive visual interface to explore and analyze the param-
eters of ensemble simulations with the trained InSituNet

• A comprehensive study revealing the effects of different hyper-
parameters of InSituNet and providing guidance for applying In-
SituNet to other simulations

2 RELATED WORK

In this section, we review related work in image-based in situ visu-
alization, parameter space exploration of ensemble simulations, and
deep learning for visualization.

2.1 Image-Based In Situ Visualization

Based on the output, in situ visualization can be categorized into
image-based [1, 2], distribution-based [20], compression-based [17,
35], and feature-based [12] approaches. We regard our work as an
image-based approach, which visualizes simulation data in situ and
stores images for post-hoc analysis. Tikhonova et al. [59–61] gener-
ated images of multiple layers in situ to enable the adjustment of trans-
fer functions in post-hoc analysis. Frey et al. [22] proposed volumetric
depth images, a compact representation of volumetric data that can be
rendered efficiently with arbitrary viewpoints. Fernandes et al. [21]
later extended volumetric depth images to handle time-varying volu-
metric data. Biedert and Garth [8] combined topology analysis and
image-based data representation to preserve flexibility for post-hoc ex-
ploration and analysis. Ahrens et al. [1, 2] proposed Cinema, a frame-
work that stores visualization images in situ and performs post-hoc
analysis via exploration and composition of those images.

Compared with these approaches, our work supports not only the
exploration of various visual mapping and view parameters but also
the creation of visualizations under new simulation parameters without
actually running the simulation.

2.2 Parameter Space Exploration

The existing parameter space exploration works for ensemble simula-
tions can generally be reviewed from two perspectives, the adopted
visualization techniques and the objective of parameter space explo-
ration. Visualization techniques that designed for high-dimensional
data are often borrowed to visualize the parameter space of ensem-
ble simulations, as the simulation parameters are typically treated as
multidimensional vectors. These techniques include but are not lim-
ited to: parallel coordinate plots [44, 65], radial plots [14–16], scat-
ter plots [39, 45, 58], line charts [9], matrices [48], and glyphs [10].
For the objectives of parameter space exploration, we believe the six
tasks sorted out by Sedlmair et al. [55] could best summarize the liter-
ature, which are optimization [62], partitioning [7, 65], filtering [47],
outliers [47, 49], uncertainty [9, 11], and sensitivity [9]. We refer the
interested readers to the work of Sedlmair et al. [55] for the detailed
definition of each task, as well as the example visualization works.

The aforementioned parameter visualization techniques and analy-
sis tasks mostly focus on a limited number of simulation inputs and
outputs collected from ensemble runs. In this paper, we train a surro-
gate model to extend our study to arbitrary parameter settings within
the parameter space, even if the simulations were not executed with
those settings. In addition, our approach is incorporated with in situ vi-
sualization, which is widely used in large-scale ensemble simulations.

2.3 Deep Learning for Visualization

The visualization community has started to incorporate deep learning
in visualization research. For example, Hong et al. [30] used long
short-term memory [29] to estimate access pattern for parallel parti-
cle tracing. Han et al. [26] used autoencoders [52] to cluster stream-
lines and streamsurfaces. Xie et al. [67] used neural network embed-
dings to detect anomalous executions in high performance computing

applications. Berger et al. [6] proposed a deep learning approach to
assist transfer function design using generative adversarial networks
(GANs) [25], which is closely related to our approach. Specifically,
we focus on parameter space exploration of ensemble simulations in-
stead of transfer function design for volume rendering.

Our work is related to deep learning based image synthesis, which
has been used in various applications, including super-resolution [18,
32, 36], denoising [68, 70], inpainting [46, 68], texture synthesis [24,
71], text-to-image synthesis [50], style transfer [23,32,72], and render-
ing [6, 19]. We investigate and combine different state-of-the-art deep
learning techniques on image synthesis (e.g., perpetual losses [32, 36]
and GANs [25]) to improve the quality of our image synthesis results.

3 OVERVIEW

Ensemble

Simulations

Image Database

(Training Data)

training

offline

Interactive

Visualization
InSituNet

exploring

parameterscreating image

database in situ

Fig. 1. Workflow of our approach. Ensemble simulations are conducted
with different simulation parameters on supercomputers, and visualiza-
tion images are generated in situ for different visual mapping and view
parameters. The generated images and the parameters are collected
into an image database. A deep image synthesis model (i.e., InSituNet)
is then trained offline based on the collected data, which is later used
for parameter space exploration through an interactive visual interface.

Figure 1 provides the workflow of our approach, which consists of
three major components. First, given ensemble simulations conducted
with different simulation parameters, we visualize the generated simu-
lation outputs in situ with different visual mapping and view parame-
ters on supercomputers. The three groups of parameters—simulation,
visual mapping, and view parameters—along with the corresponding
visualization results (i.e., images) are collected to constitute an image
database (Section 4). Second, with the collected data pairs between
parameters and the corresponding images, we train InSituNet to learn
the end-to-end mapping from the simulation inputs to the visualiza-
tion outputs (Section 5). To improve the accuracy and fidelity of the
generated images, we use and combine different state-of-the-art deep
learning techniques on image synthesis. Third, with the trained InSi-
tuNet, we build an interactive visual interface (Section 6) to explore
and analyze the parameters from two aspects: (1) predicting visualiza-
tion images interactively for arbitrary simulation, visual mapping, and
view parameters within the parameter space and (2) investigating the
sensitivity of different input parameters to the visualization results.

4 IN SITU TRAINING DATA COLLECTION

simulation
parameters

simulation data

visualization
images

run ensemble
simulations

visualize with selected
parameters in situ

visual mapping
parameters

view
parameters

Fig. 2. Our in situ training data collection pipeline. Simulation data, gen-
erated with different simulation parameters, are visualized in situ with
different visual mapping and view parameters. The in situ visualization
generates a large number of images, which are collected along with the
corresponding parameters for the training of InSituNet offline.

Figure 2 illustrates our in situ training data collection pipeline.
Given ensemble simulations conducted with different simulation pa-
rameters, we perform in situ visualization with a desired set of visual
mapping parameters (e.g., isosurfaces extraction with a set of isoval-
ues) and different view parameters (e.g., viewpoints). We denote an in-
stance of simulation, visual mapping, and view parameters as Psim, Pvis,
and Pview, respectively, which corresponds to a visualization image I.
The parameters (highlighted in green in Figure 2) and the correspond-
ing visualization images (highlighted in blue in Figure 2) constitute
data pairs, which will be stored and used to train InSituNet. InSituNet
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learns a function F that maps the three groups of parameters to the
corresponding visualization image, which can be defined as

F(Psim,Pvis,Pview)→ I, (1)

so that it can predict visualization images for unseen parameters. In
the following, we discuss the three groups of parameters in detail.

Simulation parameters Psim are represented as a vector with one
or more dimensions, and the value range of each dimension is defined
by scientists. By sweeping the parameters within the defined ranges,
ensemble simulations are conducted to generate the ensemble data.

Visual mapping parameters Pvis are predefined operations to vi-
sualize the generated simulation data, such as pseudo-coloring with
predefined color schemes. Note that we limit the users’ ability in se-
lecting arbitrary visual mappings to produce and store fewer images.

View parameters Pview are used to control the viewpoints that the
images are created from. In this work, we define the viewpoints by
a camera rotating around the simulation data, which is controlled by
azimuth θ ∈ [0,360] and elevation φ ∈ [−90,90]. For panning and
zooming, we resort to image-based operations (i.e., panning and resiz-
ing the images) as proposed in [2]). To train a deep learning model
that can predict visualization images for arbitrary viewpoints, we sam-
ple the azimuth and elevation and generate images from the sampled
viewpoints. Based on our study, we found that taking 100 viewpoints
for each ensemble member is sufficient to train InSituNet.

With the specified values for the three groups of parameters, we
generate the corresponding visualization images. Our work uses RGB
images compressed to the portable network graphics (PNG) format in-
stead of more sophisticated image formats, such as volumetric depth
images [21, 22] or explorable images [59–61], for two reasons. First,
the benefits of using those sophisticated image formats, such as sup-
porting changing of viewpoints, can be achieved by InSituNet trained
on the RGB images. Second, RGB images are more generally applica-
ble for various visualizations and more easily to be handled by neural
networks compared with those sophisticated image formats.

5 INSITUNET ARCHITECTURE AND TRAINING

input

parameters

Regressor

Discriminator adversarial loss

ground truth

prediction

Feature

Comparator

feature

reconstruction

loss

Training Inference
new input

parameters

Trained

Regressor

prediction

Fig. 3. Overview of InSituNet, which is a convolutional regression model
that predicts visualization images from input parameters. During train-
ing, the regression model is trained based on the losses computed with
the assist of a pretrained feature comparator and a discriminator.

Figure 3 illustrates the training and inference pipelines of InSituNet.
In the training stage, InSituNet consists of three subnetworks: a regres-
sor, a feature comparator, and a discriminator. The regressor Rω is a
deep neural network (defined by a set of weights ω) modeling the func-
tion that maps input parameters to visualization images as defined in
Equation 1. To train a regressor that can generate images of high fi-
delity and accuracy, we introduced the feature comparator F and the
discriminator Dυ to compute losses by comparing the predicted and
the ground truth images. The feature comparator is a pretrained neu-
ral network whose convolutional kernels are used to extract and com-
pare image features (e.g., edges, shapes) between the predicted and the
ground truth images to obtain a feature reconstruction loss. The dis-
criminator Dυ is a deep neural network whose weights υ are updated
during training to estimate the divergence between the distributions of
the predicted and the ground truth images. The divergence is known
as the adversarial loss [25], which is combined with the feature recon-
struction loss to train Rω . In the inference stage, we need only the
trained Rω , which can predict visualization images for parameters that
are not in the training data. In the following, we discuss the network
architecture, the loss function, and the training process in detail.

5.1 Network Architecture

Three subnetworks are involved during training: the regressor Rω ,
feature comparator F , and discriminator Dυ . The regressor Rω

and discriminator Dυ are two deep residual convolutional neural net-
works [27] parameterized by the weights ω and υ , respectively. The
architectures of Rω and Dυ are designed by following the network
architecture proposed by [34, 41], because the scale of our image syn-
thesis problem is similar to theirs. For the feature comparator F , we
use the pretrained VGG-19 model [57], which has been widely used
in many deep image synthesis approaches [31, 32, 36].

5.1.1 Regressor Rω
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Fig. 4. Architecture of Rω , which encodes input parameters into a latent
vector with fully connected layers and maps the latent vector into an
output image with residual blocks. The size of Rω is defined by k, which
controls the number of convolutional kernels in the intermediate layers.

The architecture of Rω is shown in Figure 4, which takes the Psim,
Pvis, and Pview as inputs and outputs a predicted image I. The three
types of parameters are first fed into three groups of fully connected
layers separately, and the outputs are then concatenated and fed into
another fully connected layer to encode them into a latent vector. Note
that the parameters could also be concatenated first and then fed into
fully connected layers. However, as each parameter is fully connected
with all neurons in the next layer, more weights will be introduced
in the network and the network size will increase. Next, the latent
vector is reshaped into a low-resolution image, which is mapped to a
high-resolution output image through residual blocks performing 2D
convolutions and upsamplings. Following the commonly used archi-
tecture [34, 41], we use the rectified linear unit (ReLU) activation func-
tion [43] in all layers except the output layer. For the output layer, we
use the tanh function to normalize each pixel into [−1,1].

Note that we introduce a constant k in the network architecture to
control the number of convolutional kernels in the intermediate layers.
The constant k is used to balance the expressive power and the size and
training time of Rω to cope with datasets in different complexities.

Residual Blocks Rω consists of several residual blocks (Fig-
ure 4a), which are proposed in [27] to improve the performance of
neural networks with increasing depth. We adopted the residual blocks
here because Rω often needs to be very deep (i.e., more than 10 con-
volutional layers) to synthesize images with high-resolutions. Inside
each residual block, the input image is first upsampled by using near-
est neighbor upsampling. The upsampled image is then fed into two
convolutional layers with kernel size 3×3. In the end, the original
input image is added to the output, and the result is sent to the next
layer. Batch normalizations are performed on the output of each con-
volutional layer to stabilize the training. Note that if the resolution or
the channel number of the input image is not the same as the output,
we perform the upsampling and convolution operations on the input
image to transform it into the size of the output.

5.1.2 Discriminator Dυ

The architecture of Dυ is shown in Figure 5, which takes a pre-
dicted/ground truth image and the corresponding parameters as inputs
and produces a likelihood value indicating how likely the input image
is a ground truth image conditioning on the given parameters. With the
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Fig. 5. Architecture of Dυ . Input parameters and the predicted/ground
truth image are transformed into latent vectors with fully connected lay-
ers and residual blocks, respectively. The latent vectors are then incor-
porated by using the projection-based method [42] to predict how likely
the image is a ground truth image conditioning on the given parameters.
Similar to Rω , the size of Dυ is controlled by the constant k.

likelihood values, an adversarial loss can be defined to update Dυ and
Rω (details in Section 5.2.2). Similar to Rω , the three types of parame-
ters are encoded into a latent vector in Dυ through fully connected lay-
ers. Meanwhile, the input image is fed through several residual blocks
to derive its intermediate representation that is a latent vector. The
latent vectors are then incorporated to obtain the likelihood value con-
ditioning on the three groups of parameters. ReLU activations are used
in all layers except the output layer, which instead uses the sigmoid
function to derive a likelihood value within [0,1].

Residual blocks The architecture of the residual blocks in Dυ

(Figure 5a) is similar to that in Rω except that downsampling (average
pooling in this work) is performed instead of upsampling to transform
images into low-resolution representations and no batch normalization
is performed, because it often hurts the performance of Dυ [34, 37].

Projection-based condition incorporation We employed the
projection-based method [42] to incorporate the conditional informa-
tion (i.e., the three groups of parameters) with the input image. This
method computes a dot product between the data to be incorporated,
which in our work is the latent vector of the input parameters and the
latent vector of the image (Figure 5b). Compared with other condi-
tion incorporation methods, such as vector concatenation [6, 40], the
projection-based method improves the quality of conditional image
synthesis results, as demonstrated by Miyato and Koyama [42].

5.1.3 Feature Comparator F
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Fig. 6. Architecture of F (i.e., VGG-19 network), where each layer is
labeled with its name. Feature maps are extracted through convolutional
layers (e.g., relu1 2) for feature-level comparisons.

To produce high quality image synthesis results, we also strive to
minimize the feature-level difference between the generated and the
ground truth image by employing a commonly used feature compara-
tor F , namely the pretrained VGG-19 model [57] shown in Figure 6.
F is a convolutional neural network, and the convolutional kernels on
each layer have been pretrained to extract certain types of image fea-
tures, such as edges and shapes. With it, we extract the features from a

generated image, as well as its corresponding ground truth image, and
minimize the difference between those features to improve the quality
of the generated image (see details in Section 5.2.1). Specifically, we
use the layer relu1 2 to extract feature maps for comparison based on
two observations. First, early layers such as the layer relu1 2 of the
VGG-19 network focus on low-level features such as edges and basic
shapes, which commonly exist in scientific visualization images. Sec-
ond, through our experiments we found that artifacts are introduced
into the generated image by pooling layers (e.g., pool1 in Figure 6).
Hence, we use the layer relu1 2 that is before the first pooling layer.

5.2 Loss Function

Given an image Î generated using Rω and the corresponding ground
truth image I, a loss function L is defined by measuring the difference
between them. Minimizing L can, therefore, be conducted by updating
the parameters ω of Rω over an iterative training process. The most
straightforward choice for L is the average of the pixel wise distance
between Î and I, such as the mean squared error. As shown in ear-
lier works [31, 32, 36], however, the average pixel wise distance often
produces over-smoothed images, lacking high-frequency features.

In this work, we define L by combining two advanced loss func-

tions: a feature reconstruction loss [32] LF,l
f eat and an adversarial

loss [25] Ladv R, namely

L= LF,l
f eat +λLadv R, (2)

where λ is the coefficient between them. LF,l
f eat measures the difference

between features extracted from the feature comparator F using its
convolutional layer l, whereas Ladv R quantifies how easily the discrim-
inator Dυ can differentiate the generated images from real ones. As
can be seen, minimizing Ladv R requires training Rω and Dυ together
in an adversarial manner (i.e., the adversarial theory of GANs [25]).
In order to train Dυ , an adversarial loss Ladv D is used.

5.2.1 Feature Reconstruction Loss

The feature reconstruction loss between image Î and I is defined by
measuring the difference between their extracted features [31, 32, 36].
Specifically, for a given image I, our feature comparator F (the pre-
trained VGG-19) is applied on I and extracts a set of feature maps,

denoted as Fl(I). Here l indicates which layer the feature maps are
from (e.g., the relu1 2 of F). The extracted feature maps can be con-
sidered as a 3D matrix of dimension h×w×c, where h, w, and c are
the height, width, and number of channels, respectively, as shown in
Figure 6. The feature reconstruction loss between Î and I can, there-

fore, be defined as the pixel wise mean squared error between Fl(Î)

and Fl(I). Extending this definition to a batch of images, the feature

reconstruction loss between Î0:b−1 and I0:b−1 (b is the batch size) is

LF,l
f eat =

1

hwcb

b−1

∑
i=0

‖Fl(Ii)−Fl(Îi)‖
2
2. (3)

Using the feature reconstruction loss enables our regressor to pro-
duce images sharing similar feature maps with the corresponding
ground truth images, which lead to images with sharper features.

5.2.2 Adversarial Loss

In addition to the feature reconstruction loss described above, we add
an adversarial loss Ladv R into the loss function. Unlike the feature
reconstruction loss, which measures the difference between each pair
of images, the adversarial loss focuses on identifying and minimizing
the divergence between two image distributions following the adver-
sarial theory of GANs. Specifically, our discriminator Dυ is trained
along with the regressor Rω to differentiate images generated by Rω

with ground truth images. As the regressor Rω becomes stronger over
the training, the discriminator Dυ is forced to identify more subtle dif-
ferences between the generated images and the ground truth.

The adversarial loss can be used as complementary to the feature
reconstruction loss for two reasons. First, the feature reconstruction

Authorized licensed use limited to: Central South University. Downloaded on March 15,2020 at 05:05:58 UTC from IEEE Xplore.  Restrictions apply. 
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loss focuses on the average difference between images, and the adver-
sarial loss focuses on local features that are the most important to dif-
ferentiate the predicted and ground truth images. Second, the feature
reconstruction loss compares the difference between each pair of the
generated and ground truth images, and the adversarial loss measures
divergence between two image distributions.

In this work, we use the standard adversarial loss presented in [25],
which uses different loss functions for the generator and discriminator.
For the generator (i.e., our regressor Rω ), the adversarial loss is

Ladv R =−
1

b

b−1

∑
i=0

logDυ (Îi), (4)

which reaches the minimum when the discriminator cannot differenti-
ate the generated images from the ground truth images. This loss is
combined with the feature reconstruction loss to update our regressor
(Equation 2). The adversarial loss of the discriminator is defined as

Ladv D =−
1

b

b−1

∑
i=0

(logDυ (Ii)+ log(1−Dυ (Îi))), (5)

which estimates the divergence between the distribution of the gener-
ated images and the ground truth images.

5.3 Techniques to Stabilize Training

We use several techniques to stabilize the adversarial training of Rω

and Dυ . The instability of adversarial trainings is a well-known prob-
lem [25], especially when the resolution of synthesized images is
high [6]. The previous work [6] divided the training into two stages
for stabilization. In the first stage, the opacity GAN that produces
64×64 opacity images is trained, whereas the opacity-to-color transla-
tion GAN is trained in the second stage to produce 256×256 color im-
ages, conditioning on the 64×64 opacity images. In this work, we train
a single pair of adversarial networks (i.e., Rω and Dυ ) that directly
produces 256×256 color images with the help of recent techniques in
stabilizing the adversarial training, including the spectral normaliza-
tion [41] and the two time-scale update rule (TTUR) [28].

5.3.1 Spectral Normalization

Spectral normalization [41] is used to mitigate the instability of the
discriminator, which is a major challenge in stabilizing the adversarial
training. Spectral normalization is a weight normalization technique,
which outperforms other weight normalization techniques in many im-
age synthesis tasks as shown in [34]. Spectral normalization normal-
izes the weight matrix of each layer based on the first singular value of
the matrix. With spectral normalization, the discriminator is enforced
to be Lipschitz continuous, such that the discriminator is constrained
and stabilized to some extent. Spectral normalization is applied on
each layer of the discriminator without changing the network architec-
ture; hence spectral normalization is not labeled in Figure 5.

5.3.2 Learning Rate

The learning rates of Rω and Dυ are critical for the stability of the
adversarial training. This work uses the Adam optimizer [33] that
changes the learning rate of each weight dynamically during training
with respect to the momentum of the weight gradients. In detail, the
learning rate in the Adam optimizer is controlled by three hyperparme-
ters: the initial learning rate α , the first-order momentum β1, and the
second-order momentum β2. To stabilize the training, a small α is of-

ten preferred; and we found that 5×10−5 stabilized the training in our
cases. In addition, we found that a bigger β1 often cripples the training
and set β1 to 0 as suggested in [13,69]. Compared with β1, β2 has less
influence on the stability of the training, which is set to 0.999.

In previous works on training GANs, we found that people often up-
date the discriminator more frequently than the generator, because they
do not want to update the generator based on a discriminator that is not
strong enough. Doing so, however, leads to a longer training time. Our
work uses the same update frequency for the regressor and discrimina-
tor but with different learning rates αD and αR (i.e., the TTUR tech-
nique [28]). Based on the empirical results shown in [13, 69], we set

the learning rate of the discriminator to be 4 times that of the regressor,
that is, αD = 2×10−4 and αR = 5×10−5.

5.4 Training Process

Algorithm 1 Training process of InSituNet.

Input: Training data includes parameters {Psim,Pvis,Pview}0:N−1 and
the corresponding images I0:N−1. Initial weights ω and υ of Rω

and Dυ , respectively. The feature comparator F .
Output: Optimized weights ω and υ

1: Repeat:
2: {Psim,Pvis,Pview}0:b−1 , I0:b−1 sampled from training data

3: Î0:b−1 ← Rω ({Psim,Pvis,Pview}0:b−1)

4: υ ← Adam(∇υLadv D( I0:b−1, Î0:b−1;υ) ,υ ,αD,β1,β2)
5: ω ← Adam(∇ωL( I0:b−1, Î0:b−1;ω) ,ω,αR,β1,β2)
6: Until exit criterion is satisfied

The process of training our regressor and discriminator is shown
in Algorithm 1. Given the training data collected in situ, namely, N
pairs of paramters {Psim,Pvis,Pview}0:N−1 and the corresponding im-
ages I0:N−1, we first initialize the network weights ω and υ using the
orthogonal initialization [54]. Then, the discriminator and regressor
are updated alternatively by using the stochastic gradient descent until
the exit criterion is satisfied. The exit criterion used in this work is the
maximum number of iterations, which is set to 125,000 because the
loss converged in our cases after 125,000 iterations.

In each iteration, a batch of parameters {Psim,Pvis,Pview}0:b−1 and
the corresponding images I0:b−1 are sampled from the training data
(line 2), where b is the batch size. Next, the current Rω takes
{Psim,Pvis,Pview}0:b−1 as inputs and produces Î0:b−1 (line 3). Accord-

ing to the loss Ladv D defined on I0:b−1 and Î0:b−1 in Equation 5,
the weights of the discriminator are updated (line 4). Similarly, the
weights of the regressor are updated as well, according to the loss func-
tion L (defined in Equations 2, 3, and 4), which is computed using the
feature comparator F and the updated discriminator Dυ (line 5). When
updating the weights υ and ω , the gradients ∇υ and ∇ω of the loss
functions Ladv D and L are computed, respectively. With ∇υ and ∇ω ,
the weights υ and ω are updated through two Adam optimizers using
the learning rates discussed in the preceding section.

6 PARAMETER SPACE EXPLORATION WITH INSITUNET
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Fig. 7. Visual interface for parameter space exploration. (a) The three
groups of parameters: simulation, visual mapping, and view parameters.
(b) The predicted visualization image and the sensitivity analysis result.

With the trained InSituNet, users can perform parameter space ex-
ploration of ensemble simulations from two perspectives. First, with
InSituNet’s forward propagations, users can interactively infer the vi-
sualization results for arbitrary parameters within the parameter space.
Second, using InSituNet’s backward propagations, users can investi-
gate the sensitivity of different parameters and thus have better under-
standing on parameter selections. To support the parameter space ex-
ploration, we built an interactive visual interface as shown in Figure 7,
which contains two views: Parameters View (Figure 7(a)) and Visual-
ization View (Figure 7(b)). In the following, we explain how users can
perform parameter space exploration with this visual interface.
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Table 1. Datasets and timings: k controls the size of InSituNet to cope with datasets in different complexities; diversity [63] measures how diverse
the generated images are; tsim, tvis, and ttr are timings for running ensemble simulations, visualizing data in situ, and training InSituNet, respectively;
t f p and tbp are timings for a forward and backward propagation of the trained InSituNet, respectively.

Simulation
Psim

Pvis
Pview

k Diversity
Size (GB) Performance

Name Number Name Number Raw Image Network tsim (hr) tvis (hr) ttr (hr) t f p (s) tbp (s)

SmallPoolFire Ck,C 4,000 pseudo-coloring with 5 color schemes N/A N/A 32 2.72 ≈25.0 0.43 0.06 1,420.0 6.45 16.40 0.031 0.19

Nyx OmM,OmB,h 500 volume rendering with a transfer function θ ,φ 100 48 1.72 ≈30.0 3.92 0.12 537.5 8.47 18.02 0.033 0.22

MPAS-Ocean BwsA 300 isosurface visualization with 3 isovalues θ ,φ 100 48 1.75 ≈300.0 3.46 0.15 229.5 10.73 18.13 0.033 0.23

6.1 Inference of Visualization Results

InSituNet is able to interactively infer the visualization results for any
user-selected parameter values. As shown in Figure 7(a), the three
groups of input parameters for the InSituNet are visualized by using
different GUI widgets. For the simulation and view parameters, be-
cause their values are usually in continuous ranges, we visualize them
using slider bars whose ranges are clipped to the corresponding param-
eters’ predefined value ranges. Users are able to select arbitrary param-
eter values by interacting with those sliders. For the visual mapping
parameters, users can switch among a set of predetermined options
using the ratio buttons, for example, selecting different isovalues for
isosurface visualizations, as shown in Figure 7(a).

The selected values for the three groups of parameters are fed into
the trained InSituNet. Through a forward propagation of the network,
which takes around 30 ms, the corresponding visualization image for
the given set of parameters is generated and visualized in the Visual-
ization View, as shown in Figure 7(b).

6.2 Sensitivity Analysis on Simulation Parameters

Because InSituNet is differentiable, users can perform sensitivity anal-
ysis for the simulation parameters using the network’s backward prop-
agations. Specifically, users can compute the derivative of a scalar
value derived from the generated image (e.g., L1 norm of the pixel
values) with respect to a selected simulation parameter. The absolute
value of the derivative can be treated as the sensitivity of the parame-
ter, which indicates how much the generated image will change if the
parameter gets changed. Note that the sensitivity analysis in this work
is used to reflect the changes (with respect to the parameters) in the
image space rather than the data space. Inspired by [6], our analysis
includes overall sensitivity analysis and subregion sensitivity analysis.

In overall sensitivity analysis, we focus on analyzing the sensitivity
of the entire image with respect to each simulation parameter across
its value range. To this end, we sweep each parameter across its value
range while fixing the values of other parameters. Images are then gen-
erated from the selected parameter values and aggregated into a scalar
(i.e., the L1 norm of the pixel values). The aggregated scalar values are
then back propagated through the InSituNet to obtain the sensitivity of
the selected parameter values. In the end, a list of sensitivity values
is returned for each parameter and visualized as a line chart on top of
the slider bar corresponding to the parameter (Figure 7(a1)) to indicate
how sensitive the parameter is across its value range.

In subregion sensitivity analysis, we analyze the sensitivity of a se-
lected parameter for different subregions of the generated image. This
analysis is done by partitioning the visualization image into blocks and
computing the sensitive of the parameter for the L1 norm of the pixel
values in each block. The computed sensitivity values are then color
coded from white to red and overlaid on top of the visualization image
to indicate what regions are more sensitive with respect to the selected
parameter (red blocks in Figure 7(b1)).

7 RESULTS

We evaluated InSituNet using combustion, cosmology, and ocean sim-
ulations (Section 7.1) from four aspects: (1) providing implementation
details and analyzing performance (Section 7.2); (2) evaluating the in-
fluence of different hyperparameters (Section 7.3); (3) comparing with
alternative methods (Section 7.4); and (4) performing parameter space
exploration and analysis with case studies (Section 7.5).

7.1 Ensemble Simulations

We evaluated the proposed approach using three ensemble simulations:
SmallPoolFire [66], Nyx [4], and MPAS-Ocean [51]. They are sum-

marized in Table 1 (left) and detailed below.

SmallPoolFire is a 2D combustion simulation from the Open-
FOAM simulation package [66]. We used it as a test case to eval-
uate InSituNet by studying two parameters: a turbulence parameter
Ck∈[0.0925,0.0975] and a combustion parameter C∈[4.99,5.01]. We
sampled 4,000 parameter settings from the parameter space: 3,900 for
training and 100 for testing. Images were generated for the tempera-
ture field by using pseudo-coloring with five predefined color schemes.
To study how diverse the generated images are, we use the method
proposed by Wang et al. [63], which measures the diversity as the re-
ciprocal of the average structural similarity (SSIM) between every pair
of images. The diversity of the images in this dataset is 2.72, which
means the average SSIM is smaller than 0.4.

Nyx is a cosmological simulation developed by Lawrence Berke-
ley National Laboratory. Based on the scientists’ suggestion, we stud-
ied three parameters: the total matter density (OmM ∈ [0.12,0.155]),
the total density of baryons (OmB ∈ [0.0215,0.0235]), and the Hub-
ble constant (h ∈ [0.55,0.85]). We sampled 500 parameter settings
from the parameter space: 400 for training and 100 for testing. The
simulation was conducted with each parameter setting and generated
a 256×256×256 volume representing the log density of the dark mat-
ters. The volume was visualized in situ by using volume rendering
with a predefined transfer function of the wave colormap1 and from
100 different viewpoints. The diversity of the generated images is 1.72.

MPAS-Ocean is a global ocean simulation developed by Los
Alamos National Laboratory. Based on the domain scientists’ inter-
est, we studied the parameter that controls the bulk wind stress ampli-
fication (BwsA ∈ [1,4]). We generated 300 ensemble members with
different BwsA values. We used 270 of them for training and the rest
for testing. The isosufaces of the temperature field (with isovalue={15,
20, 25}) were extracted and visualized from 100 different viewpoints
for each ensemble member. The isosurfaces were colored based on
salinity, using the colormap suggested by Samsel et al. [53]. The di-
versity of the generated images is 1.75.

7.2 Implementation and Performance

The proposed approach consists of three components: the in situ data
collection, the training of InSituNet, and the visual exploration and
analysis component. We discuss the implementation details and per-
formance of the three components in the following.

The in situ visualization was implemented by using ParaView Cat-
alyst2 following the Cinema framework [1, 2]. The simulations and in
situ visualization were conducted on a supercomputer of 648 compu-
tation nodes. Each node contains an Intel Xeon E5-2680 CPU with
14 cores and 128 GB of main memory. We used 1, 28, and 128 pro-
cesses, respectively, for the SmallPoolFire, Nyx, and MPAS-Ocean
simulations. InSituNet was implemented in PyTorch3 and trained with
an NVIDIA DGX-1 system, which contains 8 NVIDIA V100 GPUs
with NVlink. The visual interface was implemented based on a web
server/client framework. The interface was implemented with D3.js
on the client side, and the images were generated from a Python server
(with the assist of the trained InSituNet) and sent to the client for visu-
alization. The visual exploration and analysis were tested on a desktop
with an Intel Core i7-4770 CPU and an NVIDIA 980Ti GPU.

The space and computation costs using the proposed approach for
the three different datasets are listed in Table 1 (right). The size of
InSituNet is less than 1% and 15% of the raw simulation data and the

1https://sciviscolor.org
2https://www.paraview.org/in-situ
3https://pytorch.org
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Fig. 8. Qualitative comparison of InSituNet trained with different loss
functions. Combining L f eat and Ladv R gives the results of high quality.

image data, respectively. In terms of data reduction, we also compare
our approach with several data compression methods and the results
can be found in the supplementary material. The training of InSituNet
generally takes more than 10 hours, but the time is much less than ac-
tually running the ensemble simulations with extra parameter settings.
After training, a forward or backward propagation of InSituNet takes
less than one second on a single NVIDIA 980Ti GPU.

7.3 Model Evaluation for Different Hyperparameters

We evaluated InSituNet trained with different hyperparameters (i.e.,
loss functions, network architectures, and numbers of training sam-
ples) qualitatively and quantitatively using the data that were excluded
from the training to study two questions: (1) Is InSituNet able to gen-
erate images that are close to the ground truth images? (2) How do the
choices of hyperparameters influence the training results?

For quantitative evaluations, we used four metrics that focus on dif-
ferent aspects to compare the predicted images with the ground truth
images, including peak signal-to-noise ratio (PSNR), SSIM, earth
mover’s distance (EMD) between color histograms [6], and Fréchet
inception distance (FID) [28].

PSNR measures the pixel-level difference between two images us-
ing the aggregated mean squared error between image pixels. A higher
PSNR indicates that the compared images are more similar pixel wise.

SSIM compares two images based on the regional aggregated statis-
tical information (e.g., mean and standard deviation of small patches)
between them. A higher SSIM means the compared images are more
similar from a structural point of view.

EMD is used in [6] to quantify the distance between the color his-
tograms of two images. A lower EMD means the compared images
are more similar according to their color distributions.

FID approximates the distance between two distributions of images,
which is widely used in recent image synthesis works [13, 69] as a
complementary to other metrics. A lower FID suggests the two image
collections are more similar statistically.

7.3.1 Loss Functions

We evaluated InSituNet trained with different loss functions including
the mean squared error Lmse, the feature reconstruction loss L f eat , the
adversarial loss Ladv R, and the combination of L f eat and Ladv R.

Figure 8 compares the images generated by InSituNet trained with
different loss functions with the ground truth (The enlarged figure
can be found in the supplementary material). We can see that using
Lmse often generates over-smoothed images lacking high-frequency
features, whereas using L f eat can mitigate the problem to some ex-
tent. Using Ladv R can generate images that are as sharp as the ground
truth, but the features are often not introduced in the desired positions.

Table 2. Quantitative evaluation of InSituNet trained with different loss
functions. The model trained with the combination of L f eat and Ladv R

generates images with the best EMD and FID and only a slightly lower
PSNR and SSIM compared with the model trained with Lmse or L f eat .

Lmse L f eat Ladv R L f eat +10−2
Ladv R

SmallPoolFire

PSNR 25.090 24.937 20.184 24.288

SSIM 0.9333 0.9390 0.8163 0.9006

EMD 0.0051 0.0064 0.0056 0.0037

FID 21.063 15.881 12.859 9.4747

Nyx

PSNR 31.893 29.055 24.592 29.366

SSIM 0.8684 0.8698 0.7081 0.8336

EMD 0.0037 0.0083 0.0064 0.0022

FID 60.825 54.670 24.036 6.2694

MPAS-Ocean

PSNR 26.944 26.267 17.099 24.791

SSIM 0.8908 0.8885 0.7055 0.8655

EMD 0.0025 0.0044 0.0036 0.0017

FID 115.74 120.37 28.927 21.395

By combining L f eat and Ladv R, we are able to generate images with
sharp features, and those images are also similar to the ground truth.

Table 2 reports the quantitative results from using different loss
functions. We found that using Lmse gives the best PSNR, because
the network using Lmse is trained to minimize the mean squared error
(i.e., maximize the PSNR). Using L f eat gives the best SSIM in some
cases, because it focuses more on the structure of the images. However,
using Lmse or L f eat often results in poor performance regarding EMD
and FID. When training InSituNet with Ladv R, the FID value can be
improved, but the values of PSNR and SSIM drop a lot. By combin-
ing L f eat and Ladv R, both EMD and FID improved a lot, though the
PSNR and SSIM got slightly worse than using Lmse or L f eat .

(a) (b)

Fig. 9. Images generated by InSituNet trained with L f eat that uses dif-
ferent layers after the first pooling layer of VGG-19: (a) relu2 1 and (b)
relu3 1. Checkerboard artifacts are introduced.

For L f eat , using which layer of the pretrained VGG-19 to extract
features from images can affect the image synthesis results. Through
empirical studies, we found that using any layers after the first pooling
layer of VGG-19 will introduce undesired checkerboard artifacts, be-
cause of the “inhomogeneous gradient update” of the pooling layer [3],
as shown in Figure 9. Hence, we use the last layer right before the first
pooling layer, which is the layer relu1 2.

Table 3. Evaluating the weight λ of Ladv R: λ = 0.01 provides the results
that balance the PSNR, SSIM, EMD, and FID.

λ = 0.005 λ = 0.01 λ = 0.02 λ = 0.04

PSNR 30.043 29.366 29.040 27.232

SSIM 0.8619 0.8336 0.8253 0.7680

EMD 0.0041 0.0022 0.0023 0.0025

FID 21.267 6.2694 6.6819 9.8992

We also evaluated the influence of the weight λ for Ladv R when
combining it with L f eat (defined in Equation 2), and the results are
shown in Table 3. We found that increasing λ over 0.01 cannot im-
prove the accuracy of the generated images any further. In addition, a
small λ (i.e., 0.005) will hurt the image accuracy in terms of EMD and
FID, although the value of PSNR and SSIM can be improved slightly.
We thereby set λ to 0.01 to balance its effects on the four metrics.

7.3.2 Network Architectures

We evaluated InSituNet with different network architectures in terms
of the accuracy of predicted images, the network size, and the training
time. As mentioned in Section 5.1, the architecture of our network is
controlled by a constant k, which controls the number of convolutional
kernels in the intermediate layers. In this experiment, we evaluated
four k values: 16, 32, 48, and 64.

Figure 10 shows the PSNR and EMD of images generated by InSi-
tuNet with the four k values. We can see that InSituNet with larger
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Fig. 10. Quantitative evaluation of different network architectures con-
trolled by k with (a) PSNR and (b) EMD.

Table 4. Size and training time of different network architectures con-
trolled by k for the Nyx dataset.

k = 16 k = 32 k = 48 k = 64

Network Size (MB) 26.4 67.4 125.2 199.6

Training Time (hr) 13.73 16.42 18.02 20.17

k values can generate more (or at least equally) accurate images, be-
cause a larger k gives more expressive power to the neural network.
On the other hand, training InSituNet with a larger k also costs more
time, and more storage will be needed to store the networks, as shown
in Table 4 using the Nyx dataset as an example. Hence, to balance the
accuracy of the generated images and the cost from both computation
and storage, we set k to 32, 48, and 48 for the SmallPoolFire, Nyx, and
MPAS-Ocean, respectively.

7.3.3 Number of Ensemble Runs used for Training

Table 5. Evaluation of the number of ensemble runs used for training.

Simulation # Ensemble Runs PSNR SSIM EMD FID

SmallPoolFire

900 21.842 0.8714 0.0040 14.398

1900 23.192 0.9016 0.0036 11.732

2900 23.932 0.9018 0.0037 9.5813

3900 24.288 0.9006 0.0037 9.4747

Nyx

100 28.108 0.7951 0.0025 9.8818

200 29.404 0.8319 0.0022 6.5481

300 29.398 0.8326 0.0023 6.4239

400 29.366 0.8336 0.0022 6.2694

MPAS-Ocean

70 24.347 0.8554 0.0016 37.229

140 24.593 0.8607 0.0017 28.380

210 24.732 0.8643 0.0017 22.794

270 24.791 0.8655 0.0017 21.395

We compared InSituNet trained using different numbers of ensem-
ble runs (Table 5) to study how many ensemble runs will be needed to
train a good model for the three simulations. We found that this num-
ber is different in different simulations, depending on the complexity
of the mapping between simulation parameters and visualization re-
sults. Experiment results show that the accuracy of generated images
becomes stable when the number of ensemble runs is greater than
2,900, 200, and 210 for the SmallPoolFire, Nyx, and MPAS-Ocean
simulation, respectively. As a result, we used 3,900, 400, and 270 runs
from the three simulations to train InSituNet for the rest of the study.

7.4 Comparison with Alternative Methods

We compared our method with two alternative methods including in-
terpolating images from the training data that close to the target image
and the GAN-based volume rendering method (GAN-VR) [6] using
the Nyx dataset. For the interpolation method, we sample g images
from the training data whose parameter settings are the top g closest to
the parameter setting of the test image and interpolate the sampled im-
ages using inverse distance weighting interpolation [56]. We evaluated
g from 1 to 5 and present the result of g = 3 in this section because it
balances the four metrics (More results are in the supplementary ma-
terial). For GAN-VR, we incorporated the simulation parameters into
both the opacity GAN and the opacity-to-color translation GAN and
removed the transfer function related parameters because we used a
fixed transfer function for this dataset. For InSituNet, we selected a
network architecture whose size is not greater than the size of GAN-
VR network, for a fair comparison.

Figure 11 compares the ground truth images with the images gen-
erated by using interpolation, GAN-VR, and InSituNet. With the new

Ground Truth GAN-VR InSituNetInterpolation

Fig. 11. Comparison of the images generated using interpolation,
GAN-VR, and InSituNet with the ground truth images.

Table 6. Quantitative comparison of images generated with interpolation,
GAN-VR, and InSituNet.

Network Size PSNR SSIM EMD FID

Interpolation N/A 23.932 0.6985 0.0070 58.571

GAN-VR 80.5 MB 20.670 0.6274 0.0056 38.355

InSituNet 67.5 MB 28.471 0.8034 0.0023 9.0152

network architecture (e.g., the projection-based condition incorpora-
tion method in Section 5.1), loss functions (e.g., the feature recon-
struction loss in Section 5.2), and training strategies (e.g., the spectral
normalization in Section 5.3), InSituNet can generate results that bet-
ter preserve features compared with the other two methods. The quan-
titative comparisons between the three methods are shown in Table 6.
InSituNet outperforms the other two methods in all four metrics.

7.5 Parameter Space Exploration

This section demonstrates the effectiveness of our deep image synthe-
sis driven parameter space exploration through case studies on the Nyx
and MPAS-Ocean simulations.

7.5.1 Case Study with the Nyx Simulation

OmM

0.12 0.127 0.141 0.148 0.1550.136

600

1000

1400

1800

2200

2600

3000

s
e

n
s
it
iv

it
y

OmB

0.0215 0.022 0.023 0.02350.02253

0
200
400
600
800

1000
1200
1400

s
e

n
s
it
iv

it
y

h

0.55 0.65 0.7 0.75 0.8 0.850.59

0

1000

2000

3000

4000

5000

s
e

n
s
it
iv

it
y

Simulation Parameters Predicted Image

Fig. 12. Parameter space exploration with the Nyx simulation. For the
selected parameter values, the sensitivity of different parameters is es-
timated and visualized as line charts on the left, whereas the predicted
image is visualized on the right.

Our first case study is focused on investigating the influence of dif-
ferent simulation parameters (i.e., OmM, OmB, and h) on the Nyx
simulation. The explorations of different visualization settings can be
found in our associated video.

Figure 12 shows a selected parameter setting with the predicted vi-
sualization image. To understand the influence of each parameter, we
computed the sensitivity of the three parameters with respect to the
L1 norm of the predicted image, shown as the three line charts in Fig-
ure 12. From the scale of the three charts (i.e., the values along the
vertical axes), we see that parameter h is more sensitive to parameter
OmM and parameter OmM is more sensitive to parameter OmB.

Focusing on the most sensitive parameter, namely, parameter h, we
explored how it affects the visual appearance of the predicted images.
Figure 13 shows five images predicted by using five different h values,
while parameter OmM and OmB are fixed at the values shown on the
two corresponding slider bars in Figure 12. We first evaluate the ac-
curacy of the sensitivity curve (blue curve in Figure 13) computed by
backpropagation with the central difference method. To this end, we
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Fig. 13. Comparison of the visual appearance of the predicted images
using different h values to see the effect of this simulation parameter.

first regularly sample the simulation parameters along the curve (128
samples are drawn) and then generate the visualization images with
respect to the sampled simulation parameters. The L1 norm of the
generated images is then computed and used to compute the sensitive
curve using the central difference method. The result is shown as the
orange curve in Figure 13. We can see that the sensitivity curves gener-
ated with the two methods are similar. From the guidance provided by
the line chart in Figure 13, we see that parameter h is more sensitive in
the first half of its range (i.e., the left side of the dashed line). The three
images generated using h values from this range demonstrate a bigger
variance compared with the two images shown on the right (which are
images generated by using h values from the second half of its range).

7.5.2 Case Study with the MPAS-Ocean Simulation
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Fig. 14. Predicted images of the MPAS-Ocean dataset for different iso-
surfaces and viewpoints, which reasonably reflect the change of view
projections and shading effects.
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Fig. 15. Forward prediction (top row) and backward subregion sensitivity
analysis (bottom row) for different BwsA. Regions that influenced by
BwsA (i.e., regions a and b) are highlighted by the sensitivity map.

Our next case study explores different parameter settings for the
MPAS-Ocean simulation and demonstrates the subregion sensitivity
analysis for the simulation parameter BwsA, which characterizes the
bulk wind stress. Note that here we focus only on exploration and
analysis of new parameter settings, the comparison between the pre-
dicted and ground truth images is discussed in the previous sections.

Figure 14 shows isosurface visualizations of the temperature field
with three different isovalues from six different viewpoints. The value
of parameter BwsA is fixed at 1 in this study. The images reasonably
reflect the change of view projections and shading effects. More explo-
ration and visualization results can be found in our associated video.

Figure 15 shows the predicted images when using different BwsA
values. All images are generated from the temperature field (iso-
value=15) of MPAS-Ocean and from the same viewpoint. The first row
of images shows the result of forward inference with different BwsA
values, whereas the second row of images overlays the subregion sensi-
tivity maps onto the corresponding images of the first row. The labeled
regions (i.e., Figure 15a, b) change the most when adjusting the value
of BwsA, and the subregion sensitivity maps on the second row echo
these bigger changes, as indicated by the darker red color.

8 LIMITATIONS, DISCUSSION, AND FUTURE WORK

This section discusses several directions that we would like to explore
in the future: (1) improving the flexibility in exploring arbitrary visual
mapping parameters; (2) increasing the accuracy of predicted images;
and (3) increasing the resolution of predicted images.

One limitation of our approach is that we restricted the users’ abil-
ity in exploring arbitrary visual mapping parameters, for example, ex-
hausting all possible transfer functions for volume rendering. Instead,
we allow users to switch only among several predefined visual map-
pings, for example, the three isovalues when exploring the MPAS-
Ocean data. Theoretically, training a deep learning model to predict
visualization images for arbitrary simulation and visualization param-
eters is feasible. However, it will require a large number of training
images to cover the joint space of all possible simulation and visualiza-
tion parameters. For example, in order to train a model that can predict
volume rendering results of a single volume data for arbitrary transfer
functions, 200,000 training images are required, as shown in [6]. Con-
sequently, the size of the training data may even exceed the size of the
raw simulation data, which offsets the benefit of in situ visualization.
Considering this issue, we would like to explore deep learning tech-
niques that do not require a large number of training samples, such as
one- or zero-shot learning, to improve the flexibility of exploration.

Similar to most other machine learning techniques, generating pre-
diction results that are exactly the same as the ground truth is extraordi-
nary difficult. By taking advantage of recent advances in deep learning
for image synthesis, the proposed approach has already outperformed
other image synthesis based visualization techniques in terms of the
fidelity and accuracy of the generated images (see the comparison in
Section 7). However, we believe further improvement is still possible,
and we would like explore other network architectures and/or other
loss functions to improve our deep image synthesis model.

Our network architecture limits the resolution of output images to
256×256, which might not be sufficient for some high-resolution sim-
ulation data. We believe that our network architecture has the potential
to generate images with higher resolutions by adding more residual
blocks, and we will investigate this approach in the future.

9 CONCLUSION

In this work, we propose InSituNet, a deep learning based image syn-
thesis model supporting the parameter space exploration of large-scale
ensemble simulations visualized in situ. The model is trained to learn
the mapping from ensemble simulation parameters to visualizations of
the corresponding simulation outputs, conditioned on different visu-
alization settings (i.e., visual mapping and view parameters). With a
trained InSituNet, users can generate visualizations of simulation out-
puts with different simulation parameters without actually running the
expensive simulation, as well as synthesize new visualizations with
different visualization settings that are not used during the runs. Ad-
ditionally, an interactive visual interface is developed to explore the
space of different parameters and investigate their sensitivity using the
trained InSituNet. Through both quantitative and qualitative evalua-
tions, we validated the effectiveness of InSituNet in analyzing ensem-
ble simulations that model different physical phenomena.
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[62] T. Torsney-Weir, A. Saad, T. Möller, H.-C. Hege, B. Weber, J.-M. Ver-

bavatz, and S. Bergner. Tuner: Principled parameter finding for image

segmentation algorithms using visual response surface exploration. IEEE

Transactions on Visualization and Computer Graphics, 17(12):1892–

1901, 2011.

[63] J. Wang, L. Gou, H. Yang, and H.-W. Shen. Ganviz: A visual analyt-

ics approach to understand the adversarial game. IEEE Transactions on

Visualization and Computer Graphics, 24(6):1905–1917, 2018.

[64] J. Wang, S. Hazarika, C. Li, and H.-W. Shen. Visualization and visual

analysis of ensemble data: A survey. IEEE Transactions on Visualization

and Computer Graphics, 2018, Early Access.

[65] J. Wang, X. Liu, H.-W. Shen, and G. Lin. Multi-resolution climate ensem-

ble parameter analysis with nested parallel coordinates plots. IEEE Trans-

actions on Visualization and Computer Graphics, 23(1):81–90, 2017.

[66] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach

to computational continuum mechanics using object-oriented techniques.

Computers in Physics, 12(6):620–631, 1998.

[67] C. Xie, W. Xu, and K. Mueller. A visual analytics framework for the

detection of anomalous call stack trees in high performance computing

applications. IEEE Transactions on Visualization and Computer Graph-

ics, 25(1):215–224, 2019.

[68] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting with deep

neural networks. In Proceedings of Advances in Neural Information Pro-

cessing Systems, pp. 341–349, 2012.

[69] H. Zhang, I. J. Goodfellow, D. N. Metaxas, and A. Odena. Self-attention

generative adversarial networks. arXiv preprint arXiv:1805.08318, 2018.

[70] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a Gaussian

denoiser: Residual learning of deep CNN for image denoising. IEEE

Transactions on Image Processing, 26(7):3142–3155, 2017.

[71] Y. Zhou, Z. Zhu, X. Bai, D. Lischinski, D. Cohen-Or, and H. Huang. Non-

stationary texture synthesis by adversarial expansion. ACM Transactions

on Graphics, 37(4):49:1–49:13, 2018.

[72] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image

translation using cycle-consistent adversarial networks. In Proceedings

of 2017 International Conference on Computer Vision, pp. 2242–2251,

2017.

Authorized licensed use limited to: Central South University. Downloaded on March 15,2020 at 05:05:58 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


