
1

Supporting Information for

Bandgap Prediction by Deep Learning in Configurationally Hybridized Graphene and

Boron Nitride

Yuan Dong
1ξ

, Chuhan Wu
2ξ

, Chi Zhang
1
, Yingda Liu

2
, Jianlin Cheng

2*
, Jian Lin

1*

1Department of Mechanical & Aerospace Engineering

2Department of Electrical Engineering & Computer Science, University of Missouri, Columbia,

Missouri 65211, USA

*E-mail: LinJian@missouri.edu (J. L.) or chengji@missouri.edu (J. C.)
ξ Authors contributed equally to this work.

Supplementary Notes

Supplementary Note 1. Support Vector Machine (SVM)

The SVM used in this work was developed by Corinna Cortes and Vapnik in 1993
1
, and

evolved into support vector regression machines later
2
. It was one of the hottest machine

learning methods before the deep learning made a huge breakthrough recently. In this work, we

first flatten the original input training data to a column vector (for example, the 4 × 4 data was

flatten to be a 16 × 1 vector data). These column vectors were used as the SVM input. We

selected Polynomial
3
 as the regression kernel which can transform the data from low-dimension

space to high-dimension space.

Supplementary Note 2. VGG16 Convolutional Network (VCN)

Convolutional neural networks (CNNs)
4
, state-of-art deep learning methodologies which

combine convolution layers and fully connected (FC) layers into one model, are used widely in

the field of computer vision
5
, natural language processing

6
, self-driving cars

7
, bioinformatics

8

and so on. For the raw 2D data, convolution can extract the feature not only from the element in

mailto:LinJian@missouri.edu
mailto:chengji@missouri.edu

2

the input data but also their neighbor elements' information. This is a feature detector that's

useful in full perspectives of the 2D data. Convolution process converts them into feature map

and transforms it to later layers. For instance, when applied to image data study, it means

detecting the edge or textures of the images. In this study, the structure information of the doped

graphene we use can be set as 2D data (Channel [might: 1]*Length*Width). Each pair of atoms

inside its structure might infect its neighbor atoms so they collectively determine bandgaps of the

whole structure. We firstly built a neural network by following the VGG16 structure, which was

widely used in computer vision. This model has 16 convolution layers, one global-flatten layer,

three FC layers and an output layer. We call it VGG16 convolutional network (VCN). This

network was further modified into other two novel networks, residual convolutional network

(RCN), and concatenate convolutional network (CCN). We will elaborate them in the following

section.

2.1 Convolution layer

The convolution layer of CNN that it does convolution operation toward its input and output

forms a 2D feature map. The convolution process equation is shown in the following.

kijkijk bxWh )*()((1)

k is the index of the
thk feature map. kW and kb are the weight and bias of

thk feature map. ijkh)(

is the value of the output for the neuron in the
thk feature map in position of (i; j).

2.2 Global Max-Pooling layer

This layer extracts the biggest element, which is also the most "important" and "significant"

feature, from each channel of the previous layer. It offers the models the most convincing

3

evidence to predict the bandgaps of the investigated systems. Since the feature map in each

channel only outputs their biggest element, the output volume will “lost” one dimension from the

input volume. Since this layer can convert 2D feature data into 1D vector feature data, it also acts

as a "bridge layer" to link the previous convolution layer to the next Fully Connected Layer of

the model.

2.3 Fully connected layer

The fully connected (FC) layer is a classical neural network layer where all the neurons from

the previous layers are connected. It can be expressed as:





1

1

N

k

ikkii bxwz (2)

where iZ is the
thi neuron’s output, 1N is the neurons contained in its previous layer, kiw is the

weight of
thk neuron from previous layer, and b is the bias of the current layer.

2.4 Batch normalization layer

After each convolution and FC layer, there is a batch normalization layer. Batch

normalization
9
 is an useful process that it can erase the uncertainty of the hidden layer, and

reduce the influence of internal covariate shift which changes the distribution of network

activations during updating the parameters when training the network. Meanwhile it accelerates

the training speed for the networks. The math of batch normalization is shown in the following:

4


























)(

)(~

2

)(
)(

2)(2

)(

,
)(

,)(
1

,
1

i

norm

i

i
i

norm

i

i

i

i

ZZ

z
Z

z
m

z
m

 (3)

Where
)()2()1(,...,, mzzz are the outputs of each layer; ε is introduced to avoid dividing by zero; β, γ

are the learnable parameters of the model. After we replace (i)z with
)(~

z
i

 and push it into forward

and backward propagation, the original hyper parameter bias
(i)b will be replaced with  .

2.5 Activation function of exponential linear units (ELU)

We used exponential linear units (ELU)
10

 as the activation function in each layer. The ELU

is shown as follows when α is larger than zero.

 
 

 if 0

exp() 1 if 0

x x
f x

x x


 

 
,  

 

1 if 0

+ if 0

x
f x

f x x


  


 (4)

ELU tolerates the negative values when they are close to zero, thus it decreases shifting effect

of the bias. The rectified linear unit (ReLU) activation function is used in previous ML works
11

.

However, in our network, the ReLU function could cause serious problem because it will always

give zero if neuron units after ReLU activation converge to zero (called “dying ReLU” problem,

http://cs231n.github.io/neural-networks-1/#actfun). So we choose to use ELU as our activation

function and this problem is removed.

Supplementary Note 3. Residual convolutional network (RCN)

http://cs231n.github.io/neural-networks-1/#actfun

5

The deep training of the neural network helps it to think deeper and can extract more details

and important features from the training data. However, as the network becomes deeper and

deeper, it will reach to a maximum point of performance, and thereafter encounter with

degradation problem. The prediction accuracy gets saturated and degrades rapidly [3]. The

residual network is introduced which converts each convolution layers to residual blocks [3]. It

could help to solve the degradation problem. Fig. S2 shows the structure of a residual block. This

block has one convolution block and two identity blocks. The equation is shown as:

[2] [2] [] [2] [1] [2] []() ()l l l l l l la g Z a g a b a         (5)

[] th

[] th

[] th

[]

: the input of l activation layer

: the parameters of l convolutional layer

: the bias of l convolutional layer

: the input of residual block

l

l

l

l

Z

b

a



When degradation problem occurs, the term of [2] [1] [2]() 0l l la b     , and this formula will

become [2] []()l la g a  , it can help to prevent the network from getting hurt by degradation and

keep the network’s strong robustness and its stable performance. Because the size of input is

equal to the output of the residual block, the original network adds the parameters from a[l] and

Z[l+1] in element wise.

Supplementary Note 4. Concatenate Convolutional Network (CCN)

The CCN combined featured advantages from GoogleNet
12

 and DenseNet
13

. Unlike RCN

which “adds” feature maps in element-wise, this network concatenates the layer from input and

output them pass though [l+α] activation layer together (Fig. S3). The equation of concatenate

operation is:

6

[2] [2] []

axis=filter_num

[2] [1] [2] []

axis=filter_num

((), ())

((), ())

l l l

l l l l

C g Z g

C g b g

 

  

 

  



 
 (6)

where C(A,B) is the Concatenate function (Concatenate axis= Channels/filter numbers axis),α
[l]

is the output of l
th

 convolutional layer. When degradation problem occurs, it means

[2] [1] [2]() 0l l lb     (7)

and the equation becomes

[2] []

axis filter_num

[]

axis filter_num

((0), ())

(0, ())

l l

l

C g g

C g

 












 (8)

The input’s original information still maintains in the output, so it can prevent the network from

degradation. Meanwhile this process increases the volume and the trainable parameters of the

data. They give more evidences and information for model to analyze and help it thinking “deep”

and “thoroughly”. Like the identity and convolution blocks of residual network, we introduced

the small unit into the CCN: Concatenation Block (Fig. S3B). This block has three convolution

layers: two normal convolution layers and one bottleneck layer inside of them. Bottleneck layer

is a convolution layer with less filter number. Its filter size is 1×1 and convolution stride is 1. It

reduces the number of parameters needed to update the neural without degrading the

performance.

Supplementary Note 5. Evaluation metrics

The performance of prediction accuracy can be evaluated through many metrics. In this work we

used coefficient of correlation (R), explained variance (R
2
), Mean Absolute Error (MAE), and

Root Mean Squared Error (RMSE). Their formulas are listed below:

7

  

   

1

2 2

1 1

N

i i

i

N N

i i

i i

X X Y Y

R

X X Y Y



 

 



 



 

 (9)

1
MAE i iX Y

N
  (10)

 
2

1

1
RMSE

N

i i

i

X Y
N 

  (11)

where X is the DFT value and Y is the ML predicted value. X is the mean value of X, and

analogously for Y . N is the number of values used from comparison. The MAE and RMSE

could be further normalized by X to express them as the fractional error.

F

1
MAE i i

i

X Y

N X


 (12)

2

F

1

1
RMSE

N
i i

i i

X Y

N X

 
  

 
 (13)

Louris
Highlight

Louris
Underline

Louris
Underline

Louris
Underline

Louris
Circle
个人认为少了求和符号！

Louris
Line

8

Supplementary Figures

Fig. S1 Band structure of 6 × 6 system (a) pure graphene (b) with 3 at.% BN concentration.

Figure S2. Examples of equivalent structures obtained by translating the particular structures

along their lattice axis or inversion around their symmetry axis for 4 × 4 system.

9

Figure S3. The structure of residual convolutional network (RCN). (a) The whole architecture of

the RCN. (b) The detail about one example residual block (Res_Block).

10

Figure S4. The structure of concatenate convolutional network (CCN). (a) Overall architecture

of the CCN. (b) Details about the connection between two concatenation blocks (CBs) in the

CCN.

11

Fig. S5 Bandgaps vs. h-BN concentration in training dataset of 5 × 5 systems.

12

Supplementary Tables

Table S1. Structure and hyperparameters of VGG16 convolutional network (VCN).

Input (Graphene Structure)

Convolution Layer 1 [filter number=50, filter size=(3,3), stride=(1,1), activation='elu']

Batch Normalization Layer 1

Convolution Modules 2-12

Convolution Modules=

{Convolution Layer [filter number=50, filter size=(3,3), stride=(1,1), activation='elu']

Batch Normalization Layer}

Global-Max Pooling Layer

Dropout Layer 1 (keep probability=0.6)

Fully-Collected Layer 1 (neuron unit=64, activation="elu")

Fully-Collected Layer 2 (neuron unit=64, activation="elu")

Fully-Collected Layer 3 (neuron unit=48, activation="elu")

Dropout Layer 2 (keep probability=0.7)

Output Layer (neuron unit=1, activation="elu")

Output (Bandgap Value)

13

Table S2. Structure and hyperparameters of residual convolutional network (RCN).

Input (Graphene Structure)

Convolution Layer 1 [filter number=24, filter size=(3,3), stride=(1,1), activation='elu']

Batch Normalization Layer 1

Residual Block 1:

{Convolution Block 1 [filter number 1=24, filter number 2=24, filter number 3=48]

Identity Block 1 [filter number 1=24, filter number 2=24, filter number 3=48]

Identity Block 2 [filter number 1=24, filter number 2=24, filter number 3=48]}

Residual Block 2:

{Convolution Block 2 [filter number 1=48, filter number 2=48, filter number 3=64]

Identity Block 3 [filter number 1=48, filter number 2=48, filter number 3=64]

Identity Block 4 [filter number 1=48, filter number 2=48, filter number 3=64]}

Residual Block 3:

{Convolution Block 3 [filter number 1=64, filter number 2=64, filter number 3=72]

Identity Block 5 [filter number 1=64, filter number 2=64, filter number 3=72]

Identity Block 6 [filter number 1=64, filter number 2=64, filter number 3=72]}

Residual Block 4:

{Convolution Block 4 [filter number 1=72, filter number 2=72, filter number 3=84]

Identity Block 7 [filter number 1=72, filter number 2=72, filter number 3=84]

Identity Block 8 [filter number 1=72, filter number 2=72, filter number 3=84]}

Global Max-Pooling Layer

Fully-Collected Layer 1 (neuron unit=48, activation="elu")

Fully-Collected Layer 2 (neuron unit=24, activation="elu")

Output Layer (Neuron unit:1, activation="elu")

Output (Bandgap Value)

14

Table S3. Structure and hyperparameters of convolution blocks inside residual convolutional

network (RCN).

Input Input

Convolution Layer 1 (filter number 1, filter

size=(1,1), stride=(1,1), activation='elu')

Convolution Layer 1 (filter number 3, filter

size=(1,1), stride= (1,1), activation='elu')

Convolution Layer 2 (filter number 2, filter

size=(3,3), stride=(1,1), activation='elu')

Convolution Layer 3 (filter number 3, filter

size=(1,1), stride=(1,1), activation='elu')

Add Layer (activation='elu')

Output Layer (Neuron unit=1, activation="elu")

Table S4. Structure and hyperparameters of identity blocks inside residual convolutional

network (RCN).

Input Input

Convolution Layer 1 (filter number 1, filter

size:(1,1), stride=(1,1), activation='elu')

Convolution Layer 2 (filter number 2, filter

size:(3,3), stride=(1,1), activation='elu')

Convolution Layer 3 (filter number 3, filter

size:(1,1), stride=(1,1), activation='elu')

Add Layer (activation='elu')

Output Layer (Neuron unit=1, activation="elu")

15

Table S5. Structure and hyperparameters of concatenate convolutional network (CCN).

Input (Graphene Structure) Input (Graphene Structure)

Convolution Layer 1 [filter number=60, filter

size=(3,3), stride=(1,1), activation='elu']

Batch Normalization Layer 1

Convolution Layer 2 [filter number=60, filter

size=(3,3), stride=(1,1), activation='elu']

Batch Normalization Layer 2

Concatenate Layer (activation='elu')

Concatenation Blocks 1-15

Global Max-Pooling Layer

Drop Out Layer1 (keep probability=0.6)

Fully-Collected Layer 1 (neuron unit=64, activation="elu")

Fully-Collected Layer 2 (neuron unit=48, activation="elu")

Fully-Collected Layer 3 (neuron unit=24, activation="elu")

Drop Out Layer2 (keep probability=0.8)

Output Layer (neuron unit=1, activation="elu")

Output (Bandgap Value)

Table S6. Structure and hyperparameters of concatenation blocks inside concatenate

convolutional network (CCN).

Input Input

Convolution Layer 1 (filter number=60, filter

size=(3,3), stride=(1,1), activation='elu')

Convolution Layer 2 (“Bottleneck Layer”)

(filter number=32, filter size=(1,1),

stride=(1,1), activation='elu')

Convolution Layer 3 (filter number=60, filter

size=(3,3), stride=(1,1), activation='elu')

Concatenate Layer (activation='elu')

Output Layer (Neuron unit=1, activation="elu")

16

Table S7. Statistics of predicted bandgaps at different BN concentration for 5 × 5 supercell

systems. .

 MAE (eV) MAEF RMSE (eV) RMSEF R
2

Low Concentration (< 33 at.%)

VCN 0.06 7.04% 0.07 9.87% 0.7990

RCN 0.07 8.4% 0.08 11.1% 0.7030

CCN 0.13 14.9% 0.15 18.6% 0.6407

Medium Concentration (33 at.% ~ 66 at.%)

VCN 0.06 5.27% 0.08 6.56% 0.7924

RCN 0.06 5.62% 0.08 7.17% 0.7899

CCN 0.14 12.9% 0.16 14.6% 0.8117

High Concentration (>66 at.%)

VCN 0.09 5.13% 0.12 6.29% 0.8921

RCN 0.10 6.15% 0.13 7.70% 0.7752

CCN 0.12 7.67% 0.14 9.01% 0.8451

Supplemental References

1. Cortes C, Vapnik V, Support-vector networks, Machine Learning, 20(3), 273-297, (1995).

2. Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V, Support vector regression

machines, Advances in Neural Information Processing Systems 9, 9, 155-161, (1997).

17

3. Opsomer JD, Ruppert D, Fitting a bivariate additive model by local polynomial

regression, The Annals of Statistics, 186-211, (1997).

4. LeCun Y, Bottou L, Bengio Y, Haffner P, Gradient-based learning applied to document

recognition, Proceedings of the IEEE, 86(11), 2278-2324, (1998).

5. Krizhevsky A, Sutskever I, Hinton GE, ImageNet Classification with Deep

Convolutional Neural Networks, Advances in Neural Information Processing Systems,

1097-1105, (2012).

6. Collobert R, Weston J, A unified architecture for natural language processing: deep

neural networks with multitask learning, Proceedings of the 25
th

 International Conference

on Machine learning, 160-167, (2008).

7. Bojarski M, et al., End to end learning for self-driving cars, arXiv preprint

arXiv:1604.07316, (2016).

8. Zeng H, Edwards MD, Liu G, Gifford DK, Convolutional neural network architectures

for predicting DNA–protein binding, Bioinformatics, 32(12), i121-i127, (2016).

9. Ioffe S, Szegedy C, Batch normalization: Accelerating deep network training by reducing

internal covariate shift, arXiv preprint arXiv:1502.03167, (2015).

10. Clevert D-A, Unterthiner T, Hochreiter S, Fast and accurate deep network learning by

exponential linear units (elus), arXiv preprint arXiv:1511.07289, (2015).

11. Carrasquilla J, Melko RG, Machine learning phases of matter, Nature Physics, 13(5), 431,

(2017).

12. Szegedy C, et al., Going deeper with convolutions, 2015 IEEE Conference on Computer

Vision and Pattern Recognition, 1-9, (2015).

13. Huang G, Liu Z, van der Maaten L, Weinberger KQ, Densely connected convolutional

networks, 30
th

 IEEE Conference on Computer Vision and Pattern Recognition (CVPR

2017), 2261-2269, (2017).

