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ABSTRACT Digital respiratory sounds provide valuable information for telemedicine and smart diag-
nosis in an non-invasive way of pathological detection. As the typical continuous abnormal respiratory
sound, wheeze is clinically correlated with asthma or chronic obstructive lung diseases. Meanwhile,
the discontinuous adventitious crackle is clinically correlated with pneumonia, bronchitis, and so on. The
detection and classification of both attract many studies for decades. However, due to the contained artifacts
and constrained feature extraction methods, the reliability and accuracy of the classification of wheeze,
crackle, and normal sounds need significant improvement. In this paper, we propose a novel method
for the identification of wheeze, crackle, and normal sounds using the optimized S-transform (OST) and
deep residual networks (ResNets). First, the raw respiratory sound is processed by the proposed OST. Then,
the spectrogram of OST is rescaled for the Resnet. After the feature learning and classification are fulfilled
by the ResNet, the classes of respiratory sounds are recognized. Because the proposed OST highlights the
features of wheeze, crackle, and respiratory sounds, and the deep residual learning generates discriminative
features for better recognition, this proposed method provides reliable access for respiratory disease-related
telemedicine and E-health diagnosis. The experimental results show that the proposed OST and ResNet is
excellent for the multi-classification of respiratory sounds with the accuracy, sensitivity, and specificity
up to 98.79%, 96.27%, and 100%, respectively. The comparison results of the triple-classification of
respiratory sounds indicate that the proposed method outperforms the deep-learning-based ensembling
convolutional neural network (CNN) by 3.23% and the empirical mode decomposition-based artificial neural
network (ANN) by 4.63%, respectively.

INDEX TERMS Deep residual networks (ResNet), optimized S-transform (OST), respiratory sounds

classification, crackle and wheeze detection.

I. INTRODUCTION

Digital respiratory sounds provide important clinical charac-
teristics of normal and pathological index, which offer the
crucial basis for telemedicine and smart diagnosis. Instead of
relying on the professional experience, computerized analysis
of respiratory sounds offers objective detection and diagnosis
of adventitious pathological sounds. Moreover, the automatic
detection of adventitious respiratory sounds facilitates the
long-term monitoring and treatment in an economical and
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convenient way. Among them, wheeze and crackle are typical
continuous and discontinuous adventitious respiratory sound
respectively which have been studied for decades. As a musi-
cal high-pitched continuous sound with the typical frequency
from 100 Hz to 5000 Hz and the duration above 80 msec [1],
wheeze is an important symptom of asthma and Chronic
Obstructive Pulmonary Disease (COPD). As compared with
wheezes, the nonmusical and short discontinuous crackles
include fine crackles and coarse crackles. The frequency of
the fine crackles is about 650 Hz and the duration is about
5 msec, while the frequency of the coarse crackles is about
350 Hz and the duration is about 15 msec. Crackles is
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typically associated with obstructive lung diseases including
COPD, chronic bronchitis, pneumonja, and lung fibrosis [2].

Traditionally, the three steps need@§to detect or classify
wheeze, crackle and normal sounds are pre-processing, fea-
ture extraction and classification [3]. In pre-processing stage,
the artifacts including con hearts sounds, background noises
and contact interference are removed by filters, such as the

\band-pass filter of Butterworth [4] or adaptive filters [5].

Next, feature extraction is performed mainly based on spec-
tral features [6], [7], eigen value of singular spectrum analysis
(SSA) [8], Mel-frequency cepstral coefficients (MFCCs) [9],
ensemble empirical mode decomposition [10], wavelet based
musical features [11], statistical features of S-transform [12],
local binary patterns (LBP) features [13], energy enve-
lope [14], entropy-based features [15] or combination
features among the above mentioned methods. In the last clas-
sification stage, conventional methods is based on the empir-
ical threshold [16], [17]. Recently, great improvements have
achieved with the machine learning launch. The widely used
machine learning based methods for the classification of res-
piratory sounds include Gaussian mixed model (GMM) [18],
support vector machine (SVM) [15], k-nearest neighbors
(KNN) [19], extreme learning machine (ELM) [20], logis-
tic regression method (LRM) [7]. In [21], it is shown that
although the methods above mentioned are reliable for bi-
classification of wheeze or crackle and normal sounds, the
triple-classification of wheeze, crackle and normal sounds is
still challenging. The handcrafted features and single clas-
sifier cannot adapt well for the complex recognition among
wheeze, crackle and normal sounds. Therefore, some break-
throughs are needed for the multi-classification of the res-
piratory sounds by some comprehensive feature extraction.
With the development of deep neural networks, the other way
to achieve multi-classification emerged recently. Instead of
extracting features of respiratory sounds with statistical or
handcrafted [22] methods, adapted-well features can be gen-
erated by deep learning networks. Considering the effective-
ness of deep learning in classifying images [23], we propose

to preprocess the respiratory sounds before the deep learning-
based methods can be employed.[The preprocessing step) is

to transform the respiratory sound into the corresponding
feature maps in time-frequency domain or extracting feature
coefficients with the methods of STFT, MFCC, ST and so on.
The classification is implemented by training and testing with
the methods of GMM, ANN, CNN and ensembled CNN.
In order to improve the accuracy of the multi-classification
for respiratory sounds, the networks become deeper and
deeper. Apart from disadvantages of long training-time and
hardware configuration requirements, the bottleneck of deep-
networks is the vanishing gradient when the networks become
deep.

This paper presents a novel respiratory classification
method based on Optimized S-transform (OST) and deep
residual networks (ResNet) to recognize wheeze, crackle
and normal sounds. The proposed method combines the
merits of S-transform and deep-learning networks because
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the OST highlights the features of respiratory sounds in
the preprocessing stage and the ResNet solve the vanish-
ing gradient problem for deep-networks. Thus, the ResNet
ensures the benefit of better performance with deeper net-
works. In the proposed method, the raw respiratory sounds is
performed the OST without removing heart sounds and other
artifacts. Then, the OST spectrogram of a breathing segment,
including inspiratory and expiratory phases, is rescaled as
input of the proposed deep ResNet, thus fulfilling the clas-
sification. In this study, the ResNet is trained and tested with
a challenging dataset which includes records of noisy respi-
ratory sounds and can evaluate the validation of proposed
method. Experimental results show the superiority of the
proposed OST and deep ResNet based method with the triple-
classification accuracy of 98.79%, the sensitivity of 96.27%
and specificity of 100% respectively. The organization of this
paper is as follows. Section II discusses the proposed method.
Section III describes the experimental data, experimental
results, discussions and comparisons. Finally, conclusions are
drawn in Section IV.

Il. PROPOSED METHOD

In this study, we propose a novel method of deep ResNet
fed by rescaled feature maps of the proposed OST to clas-
sify wheezes, crackles and normal sounds. The flowchart
of the proposed OST and ResNet-based triple-classification
is shown in Figure 1. In detail, the raw segment of respi-
ratory sound is firstly performed the OST, then the OST
coefficients are described as the corresponding spectrogram
and rescaled into three fixed-size feature maps of the RGB
values versa the rescaling processing. After the processing
of training and classification with ResNet, wheeze, crackle
and normal are recognized. More details are depicted as
follows. In Section A, the OST is introduced and then
the rescaling-preprocessing is briefly described in section
B. Lastly, the training and classification with Resnet are
described in section C.

A. PROPOSED OPTIMIZED S-TRANSFORM (OST)

In methods of deep-learning based classification, feature
maps of respiratory sounds are fed into the classifier. In [22]
and [24], spectrogram images of respiratory segments are
the input of CNN. Although the STFT based spectrogram-
image includes the characteristics of respiratory sounds, some
mixed artifacts cannot be filtered are also included in this
spectrogram, which hinder the feature learning with networks
and the performance of classifiers. In our proposed OST
based ResNet method, OST is performed for feature maps of
respiratory segments. In time-frequency domain, compared

with fixed window based STFT, S-transform [25] high-
lights frequency related features with the special frequency-
dependent window, which varies wider at low frequencies and
narrower at high frequencies. The S-transform is donated as
follows

+00

Styeg(T, f) = / seg(Nw(t — T, f)e ™ dr 1)

—00
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FIGURE 1. Flowchart of proposed ResNet-based respiratory sounds classification.

where seg(t) is respiratory signal, w(z —t, f) is the frequency-
depended window function and t is the time-variable.
For adventitious respiratory sounds, S-transform displays

where, m,n € {0,1,..., N — 1} indicate the row and col-
umn of the coefficient of S-transform matrix respectively,
Seg(n) is the discrete form of the respiratory segment, and

the better time-frequency resolution due to the width-varying

N is the number of the segment samples.

window which makes the display clearly both at low frequen-
cies and high frequencies. Apart from that, the S-transform
uniquely offers the absolutely referenced local phase infor-
mation and correspondent frequency features simultaneously,
which can be described from the discrete of S-transform as

Styeg[m, n]
N-—1
> Segln+k]-e " (n #0)
=17 2

(n=0)

242 /2. 2mkmi/N
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According to the definitions of wheeze and crackle, which
are examples of the classic continuous and discontinues
adventitious respiratory sounds, the key to differentiate them
from other respiratory sounds is the index of frequency and

the corresponding duration, such as 100ms above for wheeze
and less than 15ms for crackles respectively. The S-transform
is of these merits and the illustrations of transform perfor-
mance with respiratory sounds via STFT and ST can be found
in Figure 2.

As Figure 2 shows, the frequency-depended window
of S-transform allows the swiftly track of signal changes
in frequency, phases and amplitude. However, improve-
ments can be done because the frequency range between

32847
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FIGURE 2. Transform spectrograms of STFT, ST and OST for wheeze,
crackle and normal sound. (a) Respiratory segments with wheeze, crackle
and normal sound. (b) STFT of the wheeze, crackle and normal sound.

(c) ST of the wheeze, crackle and normal sound. (d) OST of the wheeze,
crackle and normal sound with the parameter 8 < 1. (e) OST of the
wheeze, crackle and normal sound with the parameter g > 1.

100 Hz to 2000 Hz deserves to be displayed more detailly
due to the features of respiratory sounds. To fulfill the
more precisely control of the window-variation, generalized
S-transform [26] is employed and defined as

“+o00

OStseg(t,f) = f seg(Nw(t — T, o (f e ™dr  (3)

—0o0

where, o(f) = ﬁl With the variation of the parame-
ter B, the optimized S-transform can finely control the vari-
ation speed of the window-width with frequency-variation,
the coefficients of S-transform are displayed and highlighted
focus on the special frequency range pointed for the respi-
ratory sounds. The illustration performance of generalized
S-transform with respiratory sounds of wheeze, crackle and
normal sound is shown in Figure 2. The performances of
generalized S-transform with different values of the param-
eter B can be found in Figure 2 (d) and (e) respectively.
Because the transform coefficients are used for the ResNet,

32848
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FIGURE 3. Structure of ResNet 50 for respiratory sounds classification.
(a) Structure of ResNet with layers 50. (b) Conv block. (c) Identity block.

the optimization is fulfilled by the combination with the
ResNet performances.

B. RESCALING THE SPECTROGRAM OF OST

Although the coefficients matrix of the S-transform repre-
sents the characteristics of the respiratory sounds in fre-
quency, phases and amplitude, it is necessary to visually
display its corresponding spectrogram [27] with energy distri-
bution in time-frequency plane by Eq. 4 for the preprocessing
of the next step.

+oo 2
|Stseq(T, f)|2 = ‘ f seg(Dw(t — 1, f)e Tt (4)

where Stg, is the coefficients of generalized S-transform.
As shown in Figure 1, the OST spectrogram of the respiratory
segment is rescaled into three fixed size 224 x 224 RGB
images [28], [29] by bilinear method, and fed to the deep
learning based classifiers as input of feature maps.

C. TRAINING AND CLASSIFICATION USING RESNET
Deep-learning based classifiers improve accuracies in images
multi-classification greatly. In our study, we propose ResNet

VOLUME 7, 2019
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with OST based feature map to classify wheeze, crackle
and normal sound. Figure 3 shows the flowchart of training
and classification with Resnet. In detail, three RGB-maps
of the rescaled feature map is fed into ResNet with lay-
ers 50 [30] due to the balance between the depth and per-
formance. As Figure 3 (a) shown, the input feature map is
passed through three steps of the ResNet structure and finally
the class of wheeze, crackle or normal is output.

STEP-1 (ResNet Preprocessing): Orderly, the three RGB
images of an input feature map are preprocessed and normal-
ized with convolution, batch-normalization, ReL.U [31] and
Maxpooling.

STEP-2 (Feature Maps PROCESSING With Residual
Learning): Conv Blocks and Identity Blocks are orderly
included in this structure as Figure 3 shown. Where,
IdentityBlock x 2 means two consecutive Identity Blocks are
stacked together, and so on. Detailly, there are two kinds
of layers-shortcuts in residual blocks namely Conv Block
and Identity Block in the ResNet structure. The structures of
them are described in Figure 3 (b) and (c) respectively. In a
residual block, when increase dimensions occurs between the
two shortcut-layers, such as dimensions L < N, the 1 x 1
convolutions are taken to match their dimensions of lay i

ay i + 3 before the sum of them are fed to lay i 4+ 4
and the residual block is defined as the Conv Block. On the
other hand, when the two shortcut-layers are of the same
dimensions, a direct shortcut namely identity is employed

ay j and lay j + 3 to extra add the output of lay j to
lay j + 4, which is defined as Identity Block.

STEP-3 (Classification Implementation): With step-2,
the output processed features 7 x 7 x 2048, are average-pooled
to 1 x 1 x 2048 and flattened to 2048, after the processing
of full connection (FC) and the softmax activation, wheeze,
crackle and normal can be classified.

Ill. EXPERIMENTAL RESULTS

In this section, dataset of our study, training and classification
based on the ResNet with feature maps of STFT, ST and the
OST are depicted and discussed respectively. Experiments are
carried out with the NVIDIA Titan V of GV100 GPU.

A. DATASET AND EVALUATION MATRIX

The dataset in this study are composed of three kinds of
recordings of noisy respiratory sounds of Int. Conf. on
Biomedical Health Informatics (ICBHI ) Scientific challenge
database [32]. The recordings include wheezes, crackles and
normal sounds, which are recorded by the digital stethoscopes
of 3M littleman3200 and WelchAllyn Elite (Meditron).

of our dataset is used for testing. The training and testing are
performed by the proposed ResNet with 50 layers and the
rescaled feature maps are the input, described as section II.
Our experimental results are evaluated by the index of Accu-
racy (%), Sensitivity (SE) (%) [33] and Specificity (SP) (%)
at segment level and the definitions are given in (5), (6) and
(7) as follows.

TP + TN

Accuracy = (5)
TP+ TN + FP + FN
TCA
SE — A 6)
TNA
NCN
SP = — N
TNN

where, TP means true positive, TN means true negative, FP
means false positive and FP means false positive respec-
tively=I'CA refers to the True Classified Abnormal segmentsy
which means the number of correctly classified segments of
wh N Teters to lota z
ents, wheezes and crackles, under the test

refers to the Number of Correctly classified Normal segments
and TNN refers to Total Number of Normal segments in the
test. The experimental results are described in section B.

In total, the 489 recordings include 44 records of wheezes,
136 records of crackles and 309 records of normal
sounds, the corresponding segments of breath cycles include
149 breath cycles of wheezes, 386 breath cycles of crackles
and 1125 breath cycles of normal sounds respectively. The

dataset is randomly departed into two sub-datasets, and one
sub-dataset including 70% data of our dataset is used for
training and the other sub-dataset including the left 30% data

VOLUME 7, 2019

B. EVALUATION OF THE PROPOSED METHOD

In order to evaluate the effectiveness of the proposed OST
and ResNet for the triple-classification of respiratory sounds,
the three rescaled feature maps of STFT, ST and OST are
applied to the ResNet-50 with different batch sizes and itera-
tions respectively. The results are listed in Table 1 to Table 3 in
the term of classification accuracy, sensitivity and specificity
respectively and confirm the superiority and reliability of the
proposed OST and ResNet for the recognitions of wheezes,
crackle and normal sounds.

TABLE 1. Classification accuracy (%) using ResNet and STFT.

Iterations / Batch

. 16 32 64
5000 93.57 90.16 85.14
10000 90.56 90.36 86.55
15000 93.98 89.96 87.35
20000 92,97 90.36 86.35

TABLE 2. Classification accuracy (%) using ResNet and ST.

Iterations/ Batch

o 16 32 64
5000 97.19 97.59 95.38
10000 97.79 96.99 97.19
15000 97.19 97.39 96.79
20000 97.59 97.39 95.98

Table 1 shows the classification results of wheezes, crackle
and normal sounds employing the ResNet 50 with differ-
ent batch sizes and iterations using the STFT based feature

32849
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FIGURE 4. Classification results OF wheezes, crackles and normal sounds using ResNet with STFT, ST and OST. (a) ResNet with batch size 16.

(b) ResNet with batch size 32. (c) ResNet with batch size 64.

TABLE 3. Classification accuracy (%) using ResNet and OST.

Iterations/ Batch

e 16 32 64
5000 97.59 96.18 96.79
10000 97.99 97.19 95.98
15000 97.59 97.39 96.99
20000 98.79 97.19 98.39

maps as input. The best performance of classification accu-
racy is 93.98% with the batch size 16 and iteration 15000.
In Table 2, with the batch sizes from 16 to 64 and iterations
from 5000 to 20000 simultaneously, the best performance
of the ResNet based on the ST feature maps is with clas-
sification accuracy 97.79% when the batch size is 16 and
iterations are 10000 times. Compared with STFT and ST
in Table 1 and Table 2 respectively, the proposed method of
the ResNet based on OST feature maps is outperformed in
triple-classifications of wheeze, crackle and normal sounds
as shown in table 3 with accuracy 98.79% at the batch size
16 and iterations 20000.

In addition to this, the sensitivities and specificities of
the ResNet based methods for the recognition of respiratory
sounds are also shown in Figure 4. Where the batch sizes of
ResNet are set as 16, 32 and 64 in Figure 4(a), (b) and (c)
respectively with the iterations are 5000,10000,15000 and
20000 simultaneously. The best performance of ResNet with
STFT feature maps is SE 86.96% and SP 97.33% respectively
at the batch size 16 and iterations 15000 at Figure 4 (a). And
the best performance of ResNet with the ST feature maps
is the SE of 93.17% and the SP of 100% respectively at
batch size 16, iteration 10000 at Figure 4(a). It is shown at
Figure 4(a), (b) and (c) that the proposed method of the
ResNet with OST outperforms with the STFT and ST. Among
them, the best performance of proposed ResNet with OST
is the SE of 96.27%, the SP of 100%, which is imple-
mented under the batch size of 64 and iterations of 5000
at Figure 4(c).

Furthermore, the corresponding detailed recognition
results of their best performance based on the ResNet with

32850

TABLE 4. Performance comparison between different methods for the
classification of wheezes, crackles and normal sounds.

Method SE (%)  SP (%) Acf,‘,}:fcy

MFCC - ANN 90 93.33 92.05
SSA- ANN 86.31 91.11 90

WT - ANN 86.66 92.96 91.66
EMD — ANN [31] 100 93.75 94.16
MFCC - KNN N/A N/A 79.94
MFCC - GMM N/A N/A 86.68
MFCC - SVM 83.63 99.04 91.12
LBP - KNN N/A N/A 67.28
LBP - GMM N/A N/A 69.07
LBP - SVM 68.33 77.27 71.21
MFCC - CNN N/A N/A 91.67
Ensembling CNN [30] 95.01 96.15 95.56
STFT - ResNet 86.96 97.33 93.98
ST - ResNet 93.17 100 97.79
Proposed OST - ResNet 96.27 100 98.79

N/A: Not mentioned in the reference papers.

STFT, ST and OST are given at Figure 5. Detailly, ResNet
with ST outperformed with STFT for wheezes, crackles
and normal sounds recognition. And the ResNet with OST
performs the best among them. In Figure 5 (c), 337 segments
of the normal sounds are all recognized, 44 segments from the
45 testing segments of wheezes are recognized and 111 crack-
les are recognized from the 115 crackles respectively. The
outperformance of the ResNet offer a reliable method for
triple-classification of wheezes, crackles and normal sounds.

C. COMPARISON AND DISCUSSION
The proposed triple-classification of respiratory sounds
method, ResNet with OST based feature map is compared
with the recent methods as listed in table 4.

In [24], the MFCC and LBP based features are extracted
respectively and the machine learning based classifica-
tion models of popular KNN, SVM, GMM and CNN are

VOLUME 7, 2019
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FIGURE 5. Confusion matrixes for (a) the ResNet and STFT classification of wheeze, crackle and normal sounds, (b) the ResNet and ST
classification of wheeze, crackle and normal sounds, (c) the ResNet and OST classification of wheeze, crackle and normal sounds.

employed with the extracted features. As table 4 shows,
the best performance is the accuracy of 91.67% with MFCC
and CNN and with the proposed ensemble model the accu-
racy is achieved 95.56% in their test. In [34], the classifi-
cation methods of ANN based on the features of MFCC,
SSA and WT are employed respectively. The experimental
results show the best performance is the accuracy of 94.16%
with EMD and ANN. In our study, the deep ResNet with
feature maps based on STFT, ST and OST are employed
respectively. As table 4 shows, the deep ResNet based
triple-classification method overperformed all the methods
described in [24] and [34] with the ST features at the accuracy
of 93.98%, SE of 96.27%, SP of 100% and with the OST
features at the accuracy of 98.79%, SE of 96.27% and SP
of 100% respectively. The proposed method of the ResNet
with OST shows the superiority and reliability in triple-
classification of the respiratory sounds.

IV. CONCLUSION

This paper proposes a deep learning method of the ResNet
with OST to recognize wheezes, crackles and normal sounds.
The proposed ResNet based method is implemented with
the inputs of different rescaled spectrum maps, the STFT,
ST and OST respectively. With the challenging dataset of
noisy respiratory sounds, the experimental results show the
outperformance of the proposed the ResNet with OSTwith
the classification accuracy of 98.79%. Also, with the SE
of 96.27% and the SP of 100%, the proposed method is
reliable for the recognition of wheezes, crackles and normal
sounds from respiratory sounds. In summary, the proposed
ResNet using OST provides a reliable, convenient, and eco-
nomical telemedicine diagnosis of respiratory diseases. The
future work will focus on other deep-learning based methods
for multi-classification and real-time diagnosis of pulmonary
diseases.
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