第一章 枚举
Perfect Cubes
Description
For hundreds of years Fermat’s Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c^n, has remained elusively unproven. (A recent proof is believed to be correct, though it is still undergoing scrutiny.) It is possible, however, to find integers greater than 1 that satisfy the “perfect cube” equation $a^3 = b^3 + c^3 + d^3$ (e.g. a quick calculation will show that the equation $12^3 = 6^3 + 8^3 + 10^3$ is indeed true). This problem requires that you write a program to find all sets of numbers {a,b,c,d} which satisfy this equation for a <= N.
Input
One integer N (N <= 100).
OutPut
The output should be listed as shown below, one perfect cube per line, in non-decreasing order of a (i.e. the lines should be sorted by their a values). The values of b, c, and d should also be listed in non-decreasing order on the line itself. There do exist several values of a which can be produced from multiple distinct sets of b, c, and d triples. In these cases, the triples with the smaller b values should be listed first.
Sample Input
24
Sample OutPut
Cube = 6, Triple = (3,4,5)
Cube = 12, Triple = (6,8,10)
Cube = 18, Triple = (2,12,16)
Cube = 18, Triple = (9,12,15)
Cube = 19, Triple = (3,10,18)
Cube = 20, Triple = (7,14,17)
Cube = 24, Triple = (12,16,20)
Procedure
1 | /* |
Biorhythms
Description
Some people believe that there are three cycles in a person’s life that start the day he or she is born. These three cycles are the physical, emotional, and intellectual cycles, and they have periods of lengths 23, 28, and 33 days, respectively. There is one peak in each period of a cycle. At the peak of a cycle, a person performs at his or her best in the corresponding field (physical, emotional or mental). For example, if it is the mental curve, thought processes will be sharper and concentration will be easier.
Since the three cycles have different periods, the peaks of the three cycles generally occur at different times. We would like to determine when a triple peak occurs (the peaks of all three cycles occur in the same day) for any person. For each cycle, you will be given the number of days from the beginning of the current year at which one of its peaks (not necessarily the first) occurs. You will also be given a date expressed as the number of days from the beginning of the current year. You task is to determine the number of days from the given date to the next triple peak. The given date is not counted. For example, if the given date is 10 and the next triple peak occurs on day 12, the answer is 2, not 3. If a triple peak occurs on the given date, you should give the number of days to the next occurrence of a triple peak.
Input
You will be given a number of cases. The input for each case consists of one line of four integers p, e, i, and d. The values p, e, and i are the number of days from the beginning of the current year at which the physical, emotional, and intellectual cycles peak, respectively. The value d is the given date and may be smaller than any of p, e, or i. All values are non-negative and at most 365, and you may assume that a triple peak will occur within 21252 days of the given date. The end of input is indicated by a line in which p = e = i = d = -1.
Output
For each test case, print the case number followed by a message indicating the number of days to the next triple peak, in the form:
Case 1: the next triple peak occurs in 1234 days.
Use the plural form “days” even if the answer is 1.
Sample Input
0 0 0 0
0 0 0 100
5 20 34 325
4 5 6 7
283 102 23 320
203 301 203 40
-1 -1 -1 -1
Sample Output
Case 1: the next triple peak occurs in 21252 days.
Case 2: the next triple peak occurs in 21152 days.
Case 3: the next triple peak occurs in 19575 days.
Case 4: the next triple peak occurs in 16994 days.
Case 5: the next triple peak occurs in 8910 days.
Case 6: the next triple peak occurs in 10789 days.
Procedure
1 | /* |
Meet Doctor
Description
It seems that Borya is seriously sick. He is going visit n doctors to find out the exact diagnosis. Each of the doctors needs the information about all previous visits, so Borya has to visit them in the prescribed order (i.e. Borya should first visit doctor 1, then doctor 2, then doctor 3 and so on). Borya will get the information about his health from the last doctor.
Doctors have a strange working schedule. The doctor i goes to work on the si-th day and works every di day. So, he works on days si, si + di, si + 2di, ….
The doctor’s appointment takes quite a long time, so Borya can not see more than one doctor per day. What is the minimum time he needs to visit all doctors?
Input
First line contains an integer n — number of doctors (1 ≤ n ≤ 1000).
Next n lines contain two numbers si and di (1 ≤ si, di ≤ 1000).
Output
Output a single integer — the minimum day at which Borya can visit the last doctor.
Precedure
1 | /* |
Counterfeit Dollar
Description
Sally Jones has a dozen Voyageur silver dollars. However, only eleven of the coins are true silver dollars; one coin is counterfeit even though its color and size make it indistinguishable from the real silver dollars. The counterfeit coin has a different weight from the other coins but Sally does not know if it is heavier or lighter than the real coins.
Happily, Sally has a friend who loans her a very accurate balance scale. The friend will permit Sally three weighings to find the counterfeit coin. For instance, if Sally weighs two coins against each other and the scales balance then she knows these two coins are true. Now if Sally weighs
one of the true coins against a third coin and the scales do not balance then Sally knows the third coin is counterfeit and she can tell whether it is light or heavy depending on whether the balance on which it is placed goes up or down, respectively.
By choosing her weighings carefully, Sally is able to ensure that she will find the counterfeit coin with exactly three weighings.
Input
The first line of input is an integer n (n > 0) specifying the number of cases to follow. Each case consists of three lines of input, one for each weighing. Sally has identified each of the coins with the letters A–L. Information on a weighing will be given by two strings of letters and then one of the words “up”, “down”, or “even”. The first string of letters will represent the coins on the left balance; the second string, the coins on the right balance. (Sally will always place the same number of coins on the right balance as on the left balance.) The word in the third position will tell whether the right side of the balance goes up, down, or remains even.
Sample Input
1
ABCD EFGH even
ABCI EFJK up
ABIJ EFGH even
Sample Output
K is the counterfeit coin and it is light.
Procedure
1 | /* |
1 |
|
Extended Lights Out
Description
In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbors above, below, right and left, has the state of its light reversed. (If on, the light is turned off; if off, the light is turned on.) Buttons in the corners change the state of 3 buttons; buttons on an edge change the state of 4 buttons and other buttons change the state of 5. For example, if the buttons marked X on the left below were to be pressed,the display would change to the image on the right.
The aim of the game is, starting from any initial set of lights on in the display, to press buttons to get the display to a state where all lights are off. When adjacent buttons are pressed, the action of one button can undo the effect of another. For instance, in the display below, pressing buttons marked X in the left display results in the right display.Note that the buttons in row 2 column 3 and row 2 column 5 both change the state of the button in row 2 column 4,so that, in the end, its state is unchanged.
Note:
- It does not matter what order the buttons are pressed.
- If a button is pressed a second time, it exactly cancels the effect of the first press, so no button ever need be pressed more than once.
- As illustrated in the second diagram, all the lights in the first row may be turned off, by pressing the corresponding buttons in the second row. By repeating this process in each row, all the lights in the first
four rows may be turned out. Similarly, by pressing buttons in columns 2, 3 ?, all lights in the first 5 columns may be turned off.
Write a program to solve the puzzle.
Input
The first line of the input is a positive integer n which is the number of puzzles that follow. Each puzzle will be five lines, each of which has six 0 or 1 separated by one or more spaces. A 0 indicates that the light is off, while a 1 indicates that the light is on initially.
Output
For each puzzle, the output consists of a line with the string: “PUZZLE #m”, where m is the index of the puzzle in the input file. Following that line, is a puzzle-like display (in the same format as the input) . In this case, 1’s indicate buttons that must be pressed to solve the puzzle, while 0 indicate buttons, which are not pressed. There should be exactly one space between each 0 or 1 in the output puzzle-like display.
Sample Input
2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0
Sample OutPut
PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1
Procedure
1 | /* |
1 | /* |
Painter’s Problem
Description
There is a square wall which is made of n*n small square bricks. Some bricks are white while some bricks are yellow. Bob is a painter and he wants to paint all the bricks yellow. But there is something wrong with Bob’s brush. Once he uses this brush to paint brick (i, j), the bricks at (i, j), (i-1, j), (i+1, j), (i, j-1) and (i, j+1) all change their color. Your task is to find the minimum number of bricks Bob should paint in order to make all the bricks yellow.
![Painter’s Problem图示](/assets/img/algorithm/Painter’s Problem.jpg)
Input
The first line contains a single integer t (1 <= t <= 20) that indicates the number of test cases. Then follow the t cases. Each test case begins with a line contains an integer n (1 <= n <= 15), representing the size of wall. The next n lines represent the original wall. Each line contains n characters. The j-th character of the i-th line figures out the color of brick at position (i, j). We use a ‘w’ to express a white brick while a ‘y’ to express a yellow brick.
Output
For each case, output a line contains the minimum number of bricks Bob should paint. If Bob can’t paint all the bricks yellow, print ‘inf’.
Sample Input
2
3
yyy
yyy
yyy
5
wwwww
wwwww
wwwww
wwwww
wwwww
Sample Output
0
15
Procedure
1 | /* |
特殊密码锁
描述
有一种特殊的二进制密码锁,由n个相连的按钮组成(n<30),按钮有凹/凸两种状态,用手按按钮会改变其状态。
然而让人头疼的是,当你按一个按钮时,跟它相邻的两个按钮状态也会反转。当然,如果你按的是最左或者最右边的按钮,该按钮只会影响到跟它相邻的一个按钮。
当前密码锁状态已知,需要解决的问题是,你至少需要按多少次按钮,才能将密码锁转变为所期望的目标状态。
输入
两行,给出两个由0、1组成的等长字符串,表示当前/目标密码锁状态,其中0代表凹,1代表凸。
输出
至少需要进行的按按钮操作次数,如果无法实现转变,则输出impossible。
样例输入
011
000
样例输出
1
1 | /* |
1 |
|
拨钟问题
描述
1 | |-------| |-------| |-------| |
有9个式中,排成3×3的矩阵
A B C
D E F
G H I
现在需要用最少的移动,将9个时钟的指针都拨到12点的位置。共允许有9种不同的移动。如下表所示,每个移动会将若干个时钟的指针沿顺时针方向拨动90度。
移动 影响的时钟
1 ABDE
2 ABC
3 BCEF
4 ADG
5 BDEFH
6 CFI
7 DEGH
8 GHI
9 EFHI
输入
9个整数,表示各时钟指针的起始位置,相邻两个整数之间用单个空格隔开。其中,0=12点、1=3点、2=6点、3=9点。
输出
输出一个最短的移动序列,使得9个时钟的指针都指向12点。按照移动的序号从小到大输出结果。相邻两个整数之间用单个空格隔开。
样例输入
3 3 0
2 2 2
2 1 2
样例输出
4 5 8 9
程序
1 | /* |
1 |
|
第二章 递归
递归和普通函数一样通过栈调用。
构成递归需具备的条件:
1.子问题须与原问题为同形式,且更为简单;
2.不能无限制地调用本身,须有个出口,化简为非递归状况出。
递归作用:
a.替代多重循环
b.解决本来就是用递归形式定义的问题
c.将问题分解为规模更小的子问题进行求解
汉诺塔问题
描述
古代有一个梵塔,塔内有三个座A、B、C座上有64个盘子,盘子大小不等,大的在下,小的再上。有一个和尚想把这64个盘子从A座移到C座,但每次只能允许移动一个盘子,并且在移动过程中,3个座上的盘子始终保持大盘在下,小盘在上。在移动过程中可以利用B座,要求输出移动的步骤。
图示
输入
输入为一个整数后面跟三个单字符字符串。
整数为盘子的数目,后三个字符表示三个杆子的编号。
输出
输出每一步移动盘子的记录。一次移动一行。
每次移动的记录为例如3:a->b 的形式,即把编号为3的盘子从a杆移至b杆。
我们约定圆盘从小到大编号为1, 2, …n。即最上面那个最小的圆盘编号为1,最下面最大的圆盘编号为n。
样例输入
3 a b c
样例输出
1:a->c
2:a->b
1:c->b
3:a->c
1:b->a
2:b->c
1:a->c
程序
1 | /* |
1 | /* |
汉诺塔II
Problem Description
经典的汉诺塔问题经常作为一个递归的经典例题存在。可能有人并不知道汉诺塔问题的典故。汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘。上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘。有预言说,这件事完成时宇宙会在一瞬间闪电式毁灭。也有人相信婆罗门至今仍在一刻不停地搬动着圆盘。恩,当然这个传说并不可信,如今汉诺塔更多的是作为一个玩具存在。Gardon就收到了一个汉诺塔玩具作为生日礼物。
Gardon是个怕麻烦的人(恩,就是爱偷懒的人),很显然将64个圆盘逐一搬动直到所有的盘子都到达第三个柱子上很困难,所以Gardon决定作个小弊,他又找来了一根一模一样的柱子,通过这个柱子来更快的把所有的盘子移到第三个柱子上。下面的问题就是:当Gardon在一次游戏中使用了N个盘子时,他需要多少次移动才能把他们都移到第三个柱子上?很显然,在没有第四个柱子时,问题的解是2^N-1,但现在有了这个柱子的帮助,又该是多少呢?
Input
包含多组数据,每个数据一行,是盘子的数目N(1<=N<=64)。
Output
对于每组数据,输出一个数,到达目标需要的最少的移动数。
Sample Input
1
3
12
Sample Output
1
5
81
Procefure
1 | /* |
汉诺塔III
Problem Description
约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。
现在我们改变游戏的玩法,不允许直接从最左(右)边移到最右(左)边(每次移动一定是移到中间杆或从中间移出),也不允许大盘放到下盘的上面。
Daisy已经做过原来的汉诺塔问题和汉诺塔II,但碰到这个问题时,她想了很久都不能解决,现在请你帮助她。现在有N个圆盘,她至少多少次移动才能把这些圆盘从最左边移到最右边?
Input
包含多组数据,每次输入一个N值(1<=N=35)。
Output
对于每组数据,输出移动最小的次数。
Sample Input
1
3
12
Sample Output
2
26
531440
Procedure
1 | /* |
1 | /* |
汉诺塔IV
Problem Description
还记得汉诺塔III吗?他的规则是这样的:不允许直接从最左(右)边移到最右(左)边(每次移动一定是移到中间杆或从中间移出),也不允许大盘放到小盘的上面。xhd在想如果我们允许最大的盘子放到最上面会怎么样呢?(只允许最大的放在最上面)当然最后需要的结果是盘子从小到大排在最右边。
Input
输入数据的第一行是一个数据T,表示有T组数据。
每组数据有一个正整数n(1 <= n <= 20),表示有n个盘子。
Output
对于每组输入数据,最少需要的摆放次数。
Sample Input
2
1
10
Sample Output
2
19684
Procedure
1 | /* |
1 | /* |
n皇后问题
描述
输入整数n,要求n个国际象棋的皇后,摆在n×n的棋盘上,任何两个皇后都不能处于同一条横行、纵行或者斜线上。互相不能攻击,输出全部方案。
输入
输入一个正整数N,则程序输出N皇后的全部摆法。
输出
输出结果里的每一行都代表一种摆法。行里的第i个数字如果是n,就代表第i行的皇后应该放在第n列
皇后的行。列编号都市从1开始计算。
样例输入
4
样例输出
2 4 1 3
3 1 4 2
程序
1 | /* |
1 | /* |
逆波兰表达式
描述
逆波兰表达式是一种把运算符前置的算术表达式,例如普通的表达式2 + 3的逆波兰表示法为+ 2 3。逆波兰表达式的优点是运算符之间不必有优先级关系,也不必用括号改变运算次序,例如(2 + 3) * 4的逆波兰表达法为* + 2 3 4.本题求解逆波兰表达式的值,其中运算符包括+ - * /四个。
输入
输入为一行,其中运算符和运算数之间都有空格分隔开,元算数是浮点数。
输出
输出为一行,表达式的值。
样例输入
* + 11.0 12.0 + 24.0 35.0
样例输出
1357.000000
提示:(11.0+12.0) * (24.0+35.0)
1 | /* |
正则表达式(17蓝桥杯)
考虑一种简单的正则表达式: 只由 x ( ) | 组成的正则表达式。 小明想求出这个正则表达式能接受的最长字符串的长度。
例如 ((xx|xxx)x|(x|xx))xx 能接受的最长字符串是: xxxxxx,长度是6。
输入
一个由x()|组成的正则表达式。输入长度不超过100,保证合法。
输出
这个正则表达式能接受的最长字符串的长度。
例如,
输入:((xx|xxx)x|(x|xx))xx
程序应该输出: 6
资源约定:
峰值内存消耗(含虚拟机)< 256M CPU消耗< 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。 注意: main函数需要返回0; 只使用ANSI C/ANSI C++ 标准; 不要调用依赖于编译环境或操作系统的特殊函数。 所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。 提交程序时,注意选择所期望的语言类型和编译器类型。
1 |
|
表达式求值
描述
输入为四则运算表达式,仅由数字、+、-、*、/、(、)组成,没有空格,要求求其值。假设运算符结果都是整数。“/”结果也是整数。
程序
1 | /* |
上台阶
描述
树老师爬楼梯,他可以每次走1级或者2级,输入楼梯的级数,求不同的走法数。
输入
包含若干行,每行包含一个正整数N,代表楼梯级数,1<=N<=30
输出
输出不同的走法数,每一行输入对应一行
样例输入
5
8
10
样例输出
8
34
89
程序
1 | /* |
1 | #include<iostream> |
放苹果
把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不方,问共有多少种不同的分法?5,1,1和1,5,1是同一种分法。
输入
第一行是测试数据的数目t(0<=t<=20)。以下每行均包含两个整数M和N,以空格分开。1<=M,N<=10。
输出
对输入的每组数据M和N,用一行输出相应的K。
样例输入
1
7 3
样例输出
8
程序
1 | /* |
算24
描述
给出4个小于10个正整数,你可以使用加减乘除4种运算以及括号把这4个数连接起来得到一个表达式。现在的问题是,是否存在一种方式使得得到的表达式的结果等于24.
输入
输入数据包括多行,每行给出一组测试数据,包括4个小于10个正整数。最后一组测试数据中包括4个0,表示输入的结束,这组数据不用处理。
输出
对于每一组测试数据,输出一行,如果可以得到24,输出“YES”;
否则,输出“NO”;
样例输入
5 5 5 1
1 1 4 2
0 0 0 0
样例输出
YES
NO
程序
1 | /* |
全排列
描述
给定一个由不同的小写子组成的字符串,输出这个字符串的所有全排列。我们假设对于小写字母有’a’<’b’<…<’y’<’z’,而且给定字符串中的字母已经按照从小到大的顺序排列。
输入
输入只有一行,是一个由不同的小写字母组成的字符串,已知字符串的长度在1到6之间。
输出
输出这个字符串的所有排列方式,每行一个排列。要求字母序比较小的排列在前面。字母序如下定义:
已知S = s1s2…sk , T = t1t2…tk,则S < T 等价于,存在p (1 <= p <= k),使得
s1 = t1, s2 = t2, …, sp - 1 = tp - 1, sp < tp成立。
样例输入
abc
样例输出
abc
acb
bac
bca
cab
cba
程序
1 | /* |
1 |
|
2的幂次方表示
描述
任何一个正整数都可以用2的幂次方表示。
例如:
137=2(7)+2(3)+2(0)
同时约定方次用括号来表示,即ab可表示为a(b)。由此可知,137可表示为:
2(7)+2(3)+2(0)
进一步:
7=2(2)+2+2(0)(2(1)用2表示)
3=2+2(0)
所以最后137可表示为:
2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:
1315=210+28+25+2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入
一个正整数n(n<=20000)。
输出
一行,符合约定的n的0,2表示(在表示中不能有空格)。
样例输入
137
样例输出
2(2(2)+2+2(0))+2(2+2(0))+2(0)
程序
1 | /* |
1 | /* |
简单的整数划分问题
描述
将正整数n 表示成一系列正整数之和,n=n1+n2+…+nk, 其中n1>=n2>=…>=nk>=1 ,k>=1 。
正整数n 的这种表示称为正整数n 的划分。正整数n 的不同的划分个数称为正整数n 的划分数。
输入
标准的输入包含若干组测试数据。每组测试数据是一个整数N(0 < N <= 50)。
输出
对于每组测试数据,输出N的划分数。
样例输入
5
样例输出
7
程序
1 | /* |
1 | /* |
Boolean Expressions
描述
The objective of the program you are going to produce is to evaluate boolean expressions as the one shown next:
Expression: ( V | V ) & F & ( F | V )
where V is for True, and F is for False. The expressions may include the following operators: ! for not , & for and, | for or , the use of parenthesis for operations grouping is also allowed.
To perform the evaluation of an expression, it will be considered the priority of the operators, the not having the highest, and the or the lowest. The program must yield V or F , as the result for each expression in the input file.
输入
The expressions are of a variable length, although will never exceed 100 symbols. Symbols may be separated by any number of spaces or no spaces at all, therefore, the total length of an expression, as a number of characters, is unknown.
The number of expressions in the input file is variable and will never be greater than 20. Each expression is presented in a new line, as shown below.
输出
For each test expression, print “Expression “ followed by its sequence number, “: “, and the resulting value of the corresponding test expression. Separate the output for consecutive test expressions with a new line.
Use the same format as that shown in the sample output shown below.
样例输入
( V | V ) & F & ( F| V)
!V | V & V & !F & (F | V ) & (!F | F | !V & V)
(F&F|V|!V&!F&!(F|F&V))
样例输出
Expression 1: F
Expression 2: V
Expression 3: V
程序
1 | /* |
1 | /* |
第三章 分治
基本概念
把一个任务,分成形式和原任务相同,但规模更小的几个部分任务(通常是两个部分),分别完成,或只需要选一部分完成。然后再处理完成后的这一个或几个部分的结果,实现整个任务的完成。
分治的生活实例——称假币
16硬币,有可能有1枚假币,假币比真币轻。有一架天平,用最少称量次数确定有没有假币,若有的话,假币是哪一枚。
8 - 8 一称,发现无假币,或假币所在的那8枚
4 - 4 一称
2 - 2 一称
1 - 1 一称
分治的典型应用:归并排序
数组排序任务可以如下完成:
①把前一半排序
②把后一半排序
③把两半归并到一个新的有序数组,然后再拷贝回原数组,排序完成。
时间复杂度
时间复杂度:
$T\left(n\right)$
$=2,T\left(\frac{n}{2}\right) + a,n$
$= 2,\left(2,T\left(\frac{n}{4}\right) + a,\frac{n}{2}\right) + a,n$
$= 4,T\left(\frac{n}{4}\right) + 2,a,n$
$= 4,\left(2,T\left(\frac{n}{8}\right) + a,\frac{n}{4}\right) + 2,a,n$
$= 8,T\left(\frac{n}{8}\right) + 3,a,n$
$…$
$= 2^k,T\left(\frac{n}{2^k}\right) + k,a,n$
一直做到 $\frac{n}{2^k}=1$(此时$k=\log_2 n$),
$T\left(n\right)$
$= 2^k,T\left(1\right) + k,a,n$
$=2^k,T\left(1\right) + k,a,n$
$=2^k + k,a,n$
$=n + a,n,\log_2 n$
复杂度$O\left(n\log n\right)$
1 | /* |
分治的典型应用:快速排序
算法思想:
一次快排:每次high从高位向前找到第一个比枢纽记录小的记录,交换low和high两记录,之后low从低位向高位找到第一个比枢纽记录大的记录,交换low和high两记录,直至最后high与low相等为止,完成一次快排,所得结果,枢纽左边的数都比它小,枢纽右边的数都比它大。
采用递归,对枢纽两边的序列二分,分两部分再次进行一次快排,以此类推,直至low与high相等
代码:
1 | int Partition(SqList &L,int low,int high) { |
求排列的逆序对数
考虑1,2,…,n(n<=100000)的排列i1,i2,…,in,如果其中存在j,k,满足j<k且ij>ik,那么就称(ij,ik)是这个排列的一个逆序。
先给顶1,2,…,n的一个排列,求它的逆序数。
笨办法:O(n^2)
分治:O(nlogn)
①将数组分成两半,分别求出左半边的逆序数和右半边的逆序数
②再算有多少逆序是由左半边取一个数和右半边取一个数构成(要求O(n))实现。
1 | /* |
输出前m大的数
描述
给定一个数组包含n个元素,统计前m大的数并且把这m个数从大到小输出
输入
第一行包含一个整数n,表示数组的大小。n<100000
第二行包含n个整数,表示数组的元素,整数之间以一个空格分开
每个整数的绝对值不超过100000000
第三行包含一个整数m
m<n
输出
从大到小输出前m大的数,每个数一行。
程序
1 | /* |
第四章 动态规划
概述
递归到动规的一般转化方法
递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数的参数的取值范围,数组元素的值时递归函数的返回值,这样就可以从边界值开始,逐步填充数组,相当于计算递归函数值的逆过程。
动规解题的一般思路
①将原问题分解为子问题
a.把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决。
b.子问题的解一旦求出就会被保存,所以每个子问题只需求解一次。
②确定状态
a.在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状态”。一个“状态”对应于一个或多个子问题,所谓某个“状态”下的“值”,就是这个“状态”所对应的子问题的解。
b.整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。
c.在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。
d.用动态规划解题,经常碰到的情况是,K个整型变量能构成一个状态(如数字三角形中的行号和列号这两个变量构成“状态”)。如果这K个整型变量的取值范围分别是N1,N2,……,Nk,那么,我们就可以用一个K维数组array[N1][N2]…[Nk]来存储各个状态的“值”。这个“值”未必就是一个整数或浮点数,可能是需要一个结构才能表示的,那么array就可以是一个结构数组。一个“状态”下的“值”通常会是一个或多个子问题的解。
③确定一些初始状态(边界状态)的值
以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。
④确定状态转移方程
即如何从一个或多个“值”已知的”状态“,求出另一个“状态”的值。状态的迁移可以用递推公示表示,此递推公示也可被称作“状态转移方程”。
数字三角形的状态转移方程:
MaxSum[r][j]=
{
D[r][j] r=N
Max{MaxSum[r+1][j],MaxSum[r+1][j+1]+D[r][j]} 其他情况
}
能用动规解决的问题的特点
①问题具有最优子结构性质
如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质。
②无后效性
当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。
动规的常用两种形式
1)递归型
优点:直观,容易编写
缺点:可能会因递归层数太深导致爆栈,函数调用带来额外时间开销。无法使用滚动数组节省空间。总体来看,比递推型慢。
2)递推型
效率高,有可能使用滚动数组节省空间
数字三角形
描述
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。路径上的每一步都只能往左下或右下走。只需要求出这个最大和即可,不必给出具体路径。
三角形的行数大于1小于等于100,数字为0-99
输入
5 //三角形行数。
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输出
求出最大和
程序
1 | /* |
1 | /* |
1 | /* |
1 | /* |
最长上升子序列
描述
一个数的序列ai,当a1<a2<…<as的时候,我们称这个序列是上升的。对于给定的一个序列(a1,a2,…,aN),我们可以得到一些上升的子序列(ai1,ai2,…,aiK),这里1<=i1<i2<…<iK<=N。比如,对于序列(1,7,3,5,9,4,8),有它的一些上升子序列,如(1,7),(3,4,8)等等。这些子序列中最长的长度是4,比如子序列(1,3,5,8)。
你的任务,就是对于给定的序列,求出最长上升子序列的长度。
输入数据
输入的第一行是序列的长度N(1<=N<=1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000.
输出要求
最长上升子序列的长度。
输入样例
7
1 7 3 5 9 4 8
输出样例
4
程序
1 | /* |
最长公共子序列
描述
给出两个字符串,求出这样的一个最长的公共子序列的长度:子序列中的每个字符都能在两个原串中找到,而且每个字符的先后顺序和原串中的先后顺序一致。
Sample Input
abcfbc abfcab
programming contest
abcd mnp
Sample Output
4
2
0
程序
1 | /* |
最佳加法表达式
描述
给定n个1到9的数字,要求在数字之间摆放m个加号(加号两边必须有数字),使得所得到的加法表达式的值最小,并输出该值。例如,在1234中摆放1个加号,最好的摆法就是12+34,和为36
输入
有不超过15组数据
每组数据两行。第一行是整数m,表示有m个加号要放( 0<=m<=50)
第二行是若干个数字。数字总数n不超过50,且 m <= n-1
输出
对每组数据,输出最小加法表达式的值
样例输入
2
123456
1
123456
4
12345
样例输出
102
579
15
程序
1 | /* |
最大序列和
线性复杂度
1 | int max_Sub(int a[],int size) |
1 | int max_Sub(int a[],int size){ |
Max Sum
Problem Description
Given a sequence a[1],a[2],a[3]……a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
OutPut
For each test case, you should output two lines. The first line is “Case #:”, # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
Procedure
1 | /* |
最大子矩阵
描述
已知矩阵的大小定义为矩阵中所有元素的和。给定一个矩阵,你的任务是找到最大的非空(大小至少是1 × 1)子矩阵。
比如,如下4 × 4的矩阵
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
的最大子矩阵是
9 2
-4 1
-1 8
这个子矩阵的大小是15。
输入
输入是一个N × N的矩阵。输入的第一行给出N (0 < N <= 100)。再后面的若干行中,依次(首先从左到右给出第一行的N个整数,再从左到右给出第二行的N个整数……)给出矩阵中的N2个整数,整数之间由空白字符分隔(空格或者空行)。已知矩阵中整数的范围都在[-127, 127]。
输出
输出最大子矩阵的大小。
样例输入
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
样例输出
15
程序
1 | /* |
拦截导弹
描述
某国为了防御敌国的导弹袭击,开发出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭,并观测到导弹依次飞来的高度,请计算这套系统最多能拦截多少导弹。拦截来袭导弹时,必须按来袭导弹袭击的时间顺序,不允许先拦截后面的导弹,再拦截前面的导弹。
输入
输入有两行,
第一行,输入雷达捕捉到的敌国导弹的数量k(k<=25),
第二行,输入k个正整数,表示k枚导弹的高度,按来袭导弹的袭击时间顺序给出,以空格分隔。
输出
输出只有一行,包含一个整数,表示最多能拦截多少枚导弹。
样例输入
8
300 207 155 300 299 170 158 65
样例输出
6
程序
1 | /* |
大盗阿福
描述
阿福是一名经验丰富的大盗。趁着月黑风高,阿福打算今晚洗劫一条街上的店铺。
这条街上一共有 N 家店铺,每家店中都有一些现金。阿福事先调查得知,只有当他同时洗劫了两家相邻的店铺时,街上的报警系统才会启动,然后警察就会蜂拥而至。
作为一向谨慎作案的大盗,阿福不愿意冒着被警察追捕的风险行窃。他想知道,在不惊动警察的情况下,他今晚最多可以得到多少现金?
输入
输入的第一行是一个整数 T (T <= 50) ,表示一共有 T 组数据。
接下来的每组数据,第一行是一个整数 N (1 <= N <= 100, 000) ,表示一共有 N 家店铺。第二行是 N 个被空格分开的正整数,表示每一家店铺中的现金数量。每家店铺中的现金数量均不超过 1000 。
输出
对于每组数据,输出一行。该行包含一个整数,表示阿福在不惊动警察的情况下可以得到的现金数量。
样例输入
2
3
1 8 2
4
10 7 6 14
样例输出
8
24
程序
1 | /* |
鸣人的影分身
描述
在火影忍者的世界里,令敌人捉摸不透是非常关键的。我们的主角漩涡鸣人所拥有的一个招数——多重影分身之术——就是一个很好的例子。
影分身是由鸣人身体的查克拉能量制造的,使用的查克拉越多,制造出的影分身越强。
针对不同的作战情况,鸣人可以选择制造出各种强度的影分身,有的用来佯攻,有的用来发起致命一击。
那么问题来了,假设鸣人的查克拉能量为M,他影分身的个数为N,那么制造影分身时有多少种(用K表示)不同的分配方法?(影分身可以被分配到0点查克拉能量)
输入
第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。
输出
对输入的每组数据M和N,用一行输出相应的K。
样例输入
1
7 3
样例输出
8
程序
1 | /* |
开餐馆
描述
北大信息学院的同学小明毕业之后打算创业开餐馆.现在共有n 个地点可供选择。小明打算从中选择合适的位置开设一些餐馆。这 n 个地点排列在同一条直线上。我们用一个整数序列m1, m2, … mn 来表示他们的相对位置。由于地段关系,开餐馆的利润会有所不同。我们用pi 表示在mi 处开餐馆的利润。为了避免自己的餐馆的内部竞争,餐馆之间的距离必须大于k。请你帮助小明选择一个总利润最大的方案。
输入
标准的输入包含若干组测试数据。输入第一行是整数T (1 <= T <= 1000) ,表明有T组测试数据。紧接着有T组连续的测试。每组测试数据有3行,
第1行:地点总数 n (n < 100), 距离限制 k (k > 0 && k < 1000).
第2行:n 个地点的位置m1 , m2, … mn ( 1000000 > mi > 0 且为整数,升序排列)
第3行:n 个地点的餐馆利润p1 , p2, … pn ( 1000 > pi > 0 且为整数)
输出
对于每组测试数据可能的最大利润
样例输入
2
3 11
1 2 15
10 2 30
3 16
1 2 15
10 2 30
样例输出
40
30
程序
1 | /* |
宠物精灵之收服
描述
宠物小精灵是一部讲述小智和他的搭档皮卡丘一起冒险的故事。
一天,小智和皮卡丘来到了小精灵狩猎场,里面有很多珍贵的野生宠物小精灵。小智也想收服其中的一些小精灵。然而,野生的小精灵并不那么容易被收服。对于每一个野生小精灵而言,小智可能需要使用很多个精灵球才能收服它,而在收服过程中,野生小精灵也会对皮卡丘造成一定的伤害(从而减少皮卡丘的体力)。当皮卡丘的体力小于等于0时,小智就必须结束狩猎(因为他需要给皮卡丘疗伤),而使得皮卡丘体力小于等于0的野生小精灵也不会被小智收服。当小智的精灵球用完时,狩猎也宣告结束。
我们假设小智遇到野生小精灵时有两个选择:收服它,或者离开它。如果小智选择了收服,那么一定会扔出能够收服该小精灵的精灵球,而皮卡丘也一定会受到相应的伤害;如果选择离开它,那么小智不会损失精灵球,皮卡丘也不会损失体力。
小智的目标有两个:主要目标是收服尽可能多的野生小精灵;如果可以收服的小精灵数量一样,小智希望皮卡丘受到的伤害越小(剩余体力越大),因为他们还要继续冒险。
现在已知小智的精灵球数量和皮卡丘的初始体力,已知每一个小精灵需要的用于收服的精灵球数目和它在被收服过程中会对皮卡丘造成的伤害数目。请问,小智该如何选择收服哪些小精灵以达到他的目标呢?
输入
输入数据的第一行包含三个整数:N(0 < N < 1000),M(0 < M < 500),K(0 < K < 100),分别代表小智的精灵球数量、皮卡丘初始的体力值、野生小精灵的数量。
之后的K行,每一行代表一个野生小精灵,包括两个整数:收服该小精灵需要的精灵球的数量,以及收服过程中对皮卡丘造成的伤害。
输出
输出为一行,包含两个整数:C,R,分别表示最多收服C个小精灵,以及收服C个小精灵时皮卡丘的剩余体力值最多为R。
样例输入
10 100 5
7 10
2 40
2 50
1 20
4 20
10 100 5
8 110
12 10
20 10
5 200
1 110
样例输出
3 30
0 100
程序
1 | /* |
Zipper
描述
Given three strings, you are to determine whether the third string can be formed by combining the characters in the first two strings. The first two strings can be mixed arbitrarily, but each must stay in its original order.
For example, consider forming “tcraete” from “cat” and “tree”:
String A: cat
String B: tree
String C: tcraete
As you can see, we can form the third string by alternating characters from the two strings.
As a second example, consider forming “catrtee” from “cat” and “tree”:
String A: cat
String B: tree
String C: catrtee
Finally, notice that it is impossible to form “cttaree” from “cat” and “tree”.
输入
The first line of input contains a single positive integer from 1 through 1000. It represents the number of data sets to follow. The processing for each data set is identical. The data sets appear on the following lines, one data set per line.
For each data set, the line of input consists of three strings, separated by a single space. All strings are composed of upper and lower case letters only. The length of the third string is always the sum of the lengths of the first two strings. The first two strings will have lengths between 1 and 200 characters, inclusive.
输出
For each data set, print:
Data set n: yes
if the third string can be formed from the first two, or
Data set n: no
if it cannot. Of course n should be replaced by the data set number. See the sample output below for an example.
样例输入
3
cat tree tcraete
cat tree catrtee
cat tree cttaree
样例输出
Data set 1: yes
Data set 2: yes
Data set 3: no
程序
1 | /* |
Help Jimmy
描述
“Help Jimmy”是在下图所示的场景上完成的游戏:
场景中包括多个长度和高度各不相同的平台。地面是最低的平台,高度为零,长度无限。
Jimmy老鼠在时刻0从高于所有平台的某处开始下落,它的下落速度始终为1米/秒。当Jimmy落到某个平台上时,游戏者选择让它向左还是向右跑,它跑动的速度也是1米/秒。当Jimmy跑到平台的边缘时,开始继续下落。Jimmy每次下落的高度不能超过MAX米,不然就会摔死,游戏也会结束。
设计一个程序,计算Jimmy到地面时可能的最早时间。
输入
第一行是测试数据的组数t(0 <= t <= 20)。每组测试数据的第一行是四个整数N,X,Y,MAX,用空格分隔。N是平台的数目(不包括地面),X和Y是Jimmy开始下落的位置的横竖坐标,MAX是一次下落的最大高度。接下来的N行每行描述一个平台,包括三个整数,X1[i],X2[i]和H[i]。H[i]表示平台的高度,X1[i]和X2[i]表示平台左右端点的横坐标。1 <= N <= 1000,-20000 <= X, X1[i], X2[i] <= 20000,0 < H[i] < Y <= 20000(i = 1..N)。所有坐标的单位都是米。
Jimmy的大小和平台的厚度均忽略不计。如果Jimmy恰好落在某个平台的边缘,被视为落在平台上。所有的平台均不重叠或相连。测试数据保证问题一定有解。
输出
对输入的每组测试数据,输出一个整数,Jimmy到底地面时可能的最早时间。
样例输入
1
3 8 17 20
0 10 8
0 10 13
4 14 3
样例输出
23
程序
1 | /* |
滑雪
描述
Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael想知道载一个区域中最长的滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-…-3-2-1更长。事实上,这是最长的一条。
输入
输入的第一行表示区域的行数R和列数C(1 <= R,C <= 100)。下面是R行,每行有C个整数,代表高度h,0<=h<=10000。
输出
输出最长区域的长度。
样例输入
5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
样例输出
25
程序
1 | /* |
神奇的口袋
描述
有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。
输入
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a1,a2……an的值。
输出
输出不同的选择物品的方式的数目。
样例输入
3
20
20
20
样例输出
3
程序
1 | /* |
1 | /* |
Charm Bracelet
描述
Bessie has gone to the mall’s jewelry store and spies a charm bracelet. Of course, she’d like to fill it with the best charms possible from the N(1 ≤ N≤ 3,402) available charms. Each charm iin the supplied list has a weight Wi(1 ≤ Wi≤ 400), a ‘desirability’ factor Di(1 ≤ Di≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M(1 ≤ M≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
输入
Line 1: Two space-separated integers: N and M
Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
输出
Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
样例输入
4 6
1 4
2 6
3 12
2 7
样例输出
23
程序
1 | /* |
分蛋糕
描述
有一块矩形大蛋糕,长和宽分别是整数w 、h。现要将其切成m块小蛋糕,每个小蛋糕都必须是矩形、且长和宽均为整数。切蛋糕时,每次切一块蛋糕,将其分成两个矩形蛋糕。请计算:最后得到的m块小蛋糕中,最大的那块蛋糕的面积下限。
输入
共有多行,每行表示一个测试案例。每行是三个用空格分开的整数w, h, m ,其中1 ≤ w, h, m ≤ 20 , m ≤ wh. 当 w = h = m = 0 时不需要处理,表示输入结束。
输出
每个测试案例的结果占一行,输出一个整数,表示最大蛋糕块的面积下限。
样例输入
4 4 4
4 4 3
0 0 0
样例输出
4
6
程序
1 |
|
1 | /* |
复杂的整数划分问题
描述
将正整数n 表示成一系列正整数之和,n=n1+n2+…+nk, 其中n1>=n2>=…>=nk>=1 ,k>=1 。
正整数n 的这种表示称为正整数n 的划分。
输入
标准的输入包含若干组测试数据。每组测试数据是一行输入数据,包括两个整数N 和 K。
(0 < N <= 50, 0 < K <= N)
输出
对于每组测试数据,输出以下三行数据:
第一行: N划分成K个正整数之和的划分数目
第二行: N划分成若干个不同正整数之和的划分数目
第三行: N划分成若干个奇正整数之和的划分数目
样例输入
5 2
样例输出
2
3
3
程序
1 | /* |
Blocks
描述
Some of you may have played a game called ‘Blocks’. There are n blocks in a row, each box has a color. Here is an example: Gold, Silver, Silver, Silver, Silver, Bronze, Bronze, Bronze, Gold. The corresponding picture will be as shown below:
If some adjacent boxes are all of the same color, and both the box to its left(if it exists) and its right(if it exists) are of some other color, we call it a ‘box segment’. There are 4 box segments. That is: gold, silver, bronze, gold. There are 1, 4, 3, 1 box(es) in the segments respectively.
Every time, you can click a box, then the whole segment containing that box DISAPPEARS. If that segment is composed of k boxes, you will get kk points. for example, if you click on a silver box, the silver segment disappears, you got 44=16 points.
Now let’s look at the picture below:
The first one is OPTIMAL.
Find the highest score you can get, given an initial state of this game.
输入
The first line contains the number of tests t(1<=t<=15). Each case contains two lines. The first line contains an integer n(1<=n<=200), the number of boxes. The second line contains n integers, representing the colors of each box. The integers are in the range 1~n.
输出
For each test case, print the case number and the highest possible score.
样例输入
2
9
1 2 2 2 2 3 3 3 1
1
1
样例输出
Case 1: 29
Case 2: 1
程序
1 | /* |
Dividing the path
描述
Farmer John’s cows have discovered that the clover growing along the ridge of the hill in his field is particularly good. To keep the clover watered, Farmer John is installing water sprinklers along the ridge of the hill.
To make installation easier, each sprinkler head must be installed along the ridge of the hill (which we can think of as a one-dimensional number line of length L (1 <= L <= 1,000,000); L is even).
Each sprinkler waters the ground along the ridge for some distance in both directions. Each spray radius is an integer in the range A..B (1 <= A <= B <= 1000). Farmer John needs to water the entire ridge in a manner that covers each location on the ridge by exactly one sprinkler head. Furthermore, FJ will not water past the end of the ridge in either direction.
Each of Farmer John’s N (1 <= N <= 1000) cows has a range of clover that she particularly likes (these ranges might overlap). The ranges are defined by a closed interval (S,E). Each of the cow’s preferred ranges must be watered by a single sprinkler, which might or might not spray beyond the given range.
Find the minimum number of sprinklers required to water the entire ridge without overlap.
输入
Line 1: Two space-separated integers: N and L
Line 2: Two space-separated integers: A and B
Lines 3..N+2: Each line contains two integers, S and E (0 <= S < E <= L) specifying the start end location respectively of a range preferred by some cow. Locations are given as distance from the start of the ridge and so are in the range 0..L.
输出
Line 1: The minimum number of sprinklers required. If it is not possible to design a sprinkler head configuration for Farmer John, output -1.
样例输入
2 8
1 2
6 7
3 6
样例输出
3
程序
1 | /* |
第五章 深度优先搜索
深度优先遍历图的方法
从图中某顶点V触发:
(1)访问顶点V;
(2)依次从V的未被访问的邻接点触发,对图进行深度优先遍历;直至图中和V有路径相通的顶点都被访问;
(3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点触发,重新进行深度优先遍历,直到图中所有点均被访问过为止。
1 | bool Dfs(V) //判断从V能否走到终点 |
判断从V出发释放后能走到终点,如果能,要记录路径
1 | Node path[MAX_LEN]; //MAX_LEN取节点总数即可 |
遍历涂上所有节点
1 | Dfs(V) |
图的表示方法
a.邻接矩阵
用一个二维数组G存放图,G[i][j]表示节点i和节点j之间边的情况(如有无边,边方向,权值大小等)
遍历复杂度:O(n^2) n为节点数目
b.每个节点V对应一个一位数组(vector),里面存放从V连出去的边,边的信息包括另一个顶点,还可能包含边权值等。
遍历复杂度:O(n+e) n为节点数目,e为边数目
注:详见 数据结构/图
城堡问题
描述
1 | 1 2 3 4 5 6 7 |
图1是一个城堡的地形图。请你编写一个程序,计算城堡一共有多少房间,最大的房间有多大。城堡被分割成m × n (m≤50,n≤50)个方块,每个方块可以有0~4面墙。
输入
程序从标准输入设备读入数据。第一行是两个整数,分别是南北向、东西向的方块数。在接下来的输入行里,每个方块用一个数字(0≤p≤50)描述。用一个数字表示方块周围的墙,1表示西墙,2表示北墙,4表示东墙,8表示南墙。每个方块用代表其周围墙的数字之和表示。城堡的内墙被计算两次,方块(1,1)的南墙同时也是方块(2,1)的北墙。输入的数据保证城堡至少有两个房间。
输出
城堡的房间数、城堡中最大房间所包括的方块数。结果显示在标准输出设备上。
程序
1 | /* |
踩方格
描述
有一个方格矩阵,矩阵边界在无穷远处。我们做如下假设:
a.每走一步时,只能从当前方格移动一格,走到某个相邻的方格上;
b.走过的格子立即塌陷无法再走第二次;
c.只能向北、东、西三个方向走;
请问:如果允许在方格矩阵上走n步,共有多少种不同的方案。2种走法只要有一步不一样,即被认为是不同的方案。
输入
允许在方格上行走的步数n(n <= 20)
输出
计算出的方案数量
样例输入
2
样例输出
7
程序
1 | /* |
ROADS
描述
N cities named with numbers 1 … N are connected with one-way roads. Each road has two parameters associated with it : the road length and the toll that needs to be paid for the road (expressed in the number of coins).
Bob and Alice used to live in the city 1. After noticing that Alice was cheating in the card game they liked to play, Bob broke up with her and decided to move away - to the city N. He wants to get there as quickly as possible, but he is short on cash.
We want to help Bob to find the shortest path from the city 1 to the city N that he can afford with the amount of money he has.
输入
The first line of the input contains the integer K, 0 <= K <= 10000, maximum number of coins that Bob can spend on his way.
The second line contains the integer N, 2 <= N <= 100, the total number of cities.
The third line contains the integer R, 1 <= R <= 10000, the total number of roads.
Each of the following R lines describes one road by specifying integers S, D, L and T separated by single blank characters :
S is the source city, 1 <= S <= N
D is the destination city, 1 <= D <= N
L is the road length, 1 <= L <= 100
T is the toll (expressed in the number of coins), 0 <= T <=100
Notice that different roads may have the same source and destination cities.
输出
The first and the only line of the output should contain the total length of the shortest path from the city 1 to the city N whose total toll is less than or equal K coins.
If such path does not exist, only number -1 should be written to the output.
样例输入
5
6
7
1 2 2 3
2 4 3 3
3 4 2 4
1 3 4 1
4 6 2 1
3 5 2 0
5 4 3 2
样例输出
11
程序
1 | /* |
生日蛋糕
描述
7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。
设从下往上数第i(1 <= i<= M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i < M时,要求Ri > Ri+1且Hi > Hi+1。
由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。
令Q = Sπ
请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小。
(除Q外,以上所有数据皆为正整数)
输入
有两行,第一行为N(N <= 10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M <= 20),表示蛋糕的层数为M。
输出
仅一行,是一个正整数S(若无解则S = 0)。
样例输入
100
2
样例输出
68
程序
1 | /* |
1 |
|
红与黑
描述
有一间长方形的房子,地上铺了红色、黑色两种颜色的正方形瓷砖。你站在其中一块黑色的瓷砖上,只能向相邻的黑色瓷砖移动。请写一个程序,计算你总共能够到达多少块黑色的瓷砖。
输入
包括多个数据集合。每个数据集合的第一行是两个整数W和H,分别表示x方向和y方向瓷砖的数量。W和H都不超过20。在接下来的H行中,每行包括W个字符。每个字符表示一块瓷砖的颜色,规则如下
1)‘.’:黑色的瓷砖;
2)‘#’:白色的瓷砖;
3)‘@’:黑色的瓷砖,并且你站在这块瓷砖上。该字符在每个数据集合中唯一出现一次。
当在一行中读入的是两个零时,表示输入结束。
输出
对每个数据集合,分别输出一行,显示你从初始位置出发能到达的瓷砖数(记数时包括初始位置的瓷砖)。
样例输入
1 | 6 9 |
样例输出
45
程序
1 | /* |
1 | /* |
1 |
|
马走日
描述
马在中国象棋以日字形规则移动。
请编写一段程序,给定nm大小的棋盘,以及马的初始位置(x,y),要求不能重复经过棋盘上的同一个点,计算马可以有多少途径遍历棋盘上的所有点。
*输入**
第一行为整数T(T < 10),表示测试数据组数。
每一组测试数据包含一行,为四个整数,分别为棋盘的大小以及初始位置坐标n,m,x,y。(0<=x<=n-1,0<=y<=m-1, m < 10, n < 10)
输出
每组测试数据包含一行,为一个整数,表示马能遍历棋盘的途径总数,0为无法遍历一次。
样例输入
1
5 4 0 0
样例输出
32
1 | /* |
A Knight’s Journey
描述
Background
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 × 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
输入
The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p × q <= 26. This represents a p × q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
输出
The output for every scenario begins with a line containing “Scenario #i:”, where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
样例输入
3
1 1
2 3
4 3
样例输出
Scenario #1:
A1
Scenario #2:
impossible
Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4
程序
1 | /* |
1 |
|
Sudoku
描述
Sudoku is a very simple task. A square table with 9 rows and 9 columns is divided to 9 smaller squares 3x3 as shown on the Figure. In some of the cells are written decimal digits from 1 to 9. The other cells are empty. The goal is to fill the empty cells with decimal digits from 1 to 9, one digit per cell, in such way that in each row, in each column and in each marked 3x3 subsquare, all the digits from 1 to 9 to appear. Write a program to solve a given Sudoku-task.
输入
The input data will start with the number of the test cases. For each test case, 9 lines follow, corresponding to the rows of the table. On each line a string of exactly 9 decimal digits is given, corresponding to the cells in this line. If a cell is empty it is represented by 0.
输出
For each test case your program should print the solution in the same format as the input data. The empty cells have to be filled according to the rules. If solutions is not unique, then the program may print any one of them.
样例输入
1
103000509
002109400
000704000
300502006
060000050
700803004
000401000
009205800
804000107
样例输出
143628579
572139468
986754231
391542786
468917352
725863914
237481695
619275843
854396127
程序
1 | /* |
1 |
|
1 |
|
棋盘问题
描述
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
输入
输入含有多组测试数据。
每组数据的第一行是两个正整数,n,k,用一个空格隔开,表示了将在一个n×n的矩阵内描述棋盘,以及摆放棋子的数目。
n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域,.表示空白区域(数据保证不出现多余的空白行或者空白列)。
输出
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
样例输入
1 | 2 1 |
样例输出
2
1
程序
1 | /* |
第六章 广度优先搜索
广搜与深搜的比较
1.广搜一般用于状态表示比较简单、求最优策略的问题
优点:是一种完备策略,即只要问题有解,它一定可以找到解,并且,广度优先搜索找到的解,还一定是路径最短的解。
缺点:盲目性较大,尤其是当目标节点距初始节点较远时,将产生许多无用的节点,因此其搜索效率较低。需要保存所有扩展出的状态,占用的空间大
2.深搜几乎可以用于任何问题
只需要保存从起始状态到当前状态路径上的节点
广度优先搜索算法如下:
a.把初始结点S0放入Open表中;
b.如果Open表为空,则问题无解,失败退出;
c.把Open表的第一个节点取出放入Closed表,并记该节点为n;
d.考察节点n是否为目标节点。若是,则得到问题的解,成功退出;
e.若结点n不可扩展,则转b;
f.扩展节点n,将其不再Closed表和Open表中的子节点(判重)放入Open表的尾部,并为每一个子节点设置指向父节点的指针(或记录节点的层次),然后转b。
抓住那头牛
描述
农夫知道一头牛的位置,想要抓住它。农夫和牛都位于数轴上,农夫起始位于点 N(0<=N<=100000),牛位于点 K(0<=K<=100000)。农夫有两种移动方式:
1、从X移动到X-1或X+1,每次移动花费一分钟
2、从X移动到2×X,每次移动花费一分钟
假设牛没有意识到农夫的行动,站在原地不动。农夫最少要花多少时间才能抓住牛?
输入
两个整数,N和K
输出
一个整数,农夫抓到牛所要花费的最小分钟数
样例输入
5 17
样例输出
4
程序
1 | /* |
迷宫问题
描述
定义一个二维数组,它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。
输入
一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。
输出
左上角到右下角的最短路径,格式如样例所示。
样例输入
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
样例输出
(0, 0)
(1, 0)
(2, 0)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(3, 4)
(4, 4)
程序
1 | /* |
鸣人和佐助
描述
佐助被大蛇丸诱骗走了,鸣人在多少时间内能追上他呢?
已知一张地图(以二维矩阵的形式表示)以及佐助和鸣人的位置。地图上的每个位置都可以走到,只不过有些位置上有大蛇丸的手下,需要先打败大蛇丸的手下才能到这些位置。鸣人有一定数量的查克拉,每一个单位的查克拉可以打败一个大蛇丸的手下。假设鸣人可以往上下左右四个方向移动,每移动一个距离需要花费1个单位时间,打败大蛇丸的手下不需要时间。如果鸣人查克拉消耗完了,则只可以走到没有大蛇丸手下的位置,不可以再移动到有大蛇丸手下的位置。佐助在此期间不移动,大蛇丸的手下也不移动。请问,鸣人要追上佐助最少需要花费多少时间?
输入
输入的第一行包含三个整数:M,N,T。代表M行N列的地图和鸣人初始的查克拉数量T。0 < M,N < 200,0 ≤ T < 10
后面是M行N列的地图,其中@代表鸣人,+代表佐助。*代表通路,#代表大蛇丸的手下。
输出
输出包含一个整数R,代表鸣人追上佐助最少需要花费的时间。如果鸣人无法追上佐助,则输出-1。
样例输入
1 | 4 4 1 |
样例输出
6
4
程序
1 | /* |
1 | /* |
单词序列
描述
给出两个单词(开始单词和结束单词)以及一个词典。找出从开始单词转换到结束单词,所需要的最短转换序列。转换的规则如下:
1、每次只能改变一个字母
2、转换过程中出现的单词(除开始单词和结束单词)必须存在于词典中
例如:
开始单词为:hit
结束单词为:cog
词典为:[hot,dot,dog,lot,log,mot]
那么一种可能的最短变换是: hit -> hot -> dot -> dog -> cog,
所以返回的结果是序列的长度5;
注意:
1、如果不能找到这种变换,则输出0;
2、词典中所有单词长度一样;
3、所有的单词都由小写字母构成;
4、开始单词和结束单词可以不在词典中。
输入
共两行,第一行为开始单词和结束单词(两个单词不同),以空格分开。第二行为若干的单词(各不相同),以空格分隔开来,表示词典。单词长度不超过5,单词个数不超过30。
输出
输出转换序列的长度。
样例输入
hit cog
hot dot dog lot log
样例输出
5
程序
1 | /* |
1 |
|
Pots
描述
You are given two pots, having the volume of A and B liters respectively. The following operations can be performed:
FILL(i): fill the pot i (1 ≤ i ≤ 2) from the tap;
DROP(i): empty the pot i to the drain;
POUR(i,j): pour from pot i to pot j; after this operation either the pot j is full (and there may be some water left in the pot i), or the pot i is empty (and all its contents have been moved to the pot j).
Write a program to find the shortest possible sequence of these operations that will yield exactly C liters of water in one of the pots.
输入
On the first and only line are the numbers A, B, and C. These are all integers in the range from 1 to 100 and C≤max(A,B).
输出
The first line of the output must contain the length of the sequence of operations K. The following K lines must each describe one operation. If there are several sequences of minimal length, output any one of them. If the desired result can’t be achieved, the first and only line of the file must contain the word ‘impossible’.
样例输入
3 5 4
样例输出
6
FILL(2)
POUR(2,1)
DROP(1)
POUR(2,1)
FILL(2)
POUR(2,1)
程序
1 | /* |
1 |
|
第七章 散列(hash)
定义
元素通过一个函数转换为整数,使得该整数可以尽量唯一地代表这个元素
转换函数称为 散列函数H,也就是说,如果元素在转换前为key,那么转换后就是H(key)
整数散列
直接定制法
1.恒等变换:H(key)=Key
直接将key作为数组下标,是最常见最实用的散列应用
2.线性变换:H(key)=a*key+b
除留余数法
H(key)=key%mod
表长TSize不小于mod
冲突
通过除留余数法可能会有两个不同的数key1和key2,它们的hash值H(key)相同!
线性探查法(Linear Probing)——开放地址法
当得到的key的hash值H(key),但是表中下标H(key)已经被占用,那么查找H(key)+1是否被占用,如果查找超过表长,则从表头重新开始查找,
知道找到一个可以使用的位置,或者是发现表中所有为之都已被使用。
容易导致扎堆,即表中连续若干个位置都被使用,这在一定程度上会降低效率
平方探查法(Quadratic probing)——开放地址法
H(key)+1^2, H(key)-1^2
H(key)+2^2, H(key)-2^2
…,
H(key)+k^2,H(key)-k^2
如果检查过程中H(key)+k^2超过了表长TSize,那么就把H(key)+k^2对表长TSize取模
如果检查过程中出现H(key)-k^2<0的情况(假设表的首位为0),那么将((H(key)-k^2)%TSize+Tsize)%TSize作为结果
如果想避免负数的麻烦,可以只进行正向的平方探查
可以证明,如果k在[0,TSize)范围内斗无法找到位置,那么当k>=TSize时,也一定无法找到位置。
链地址法——拉链法
和上面两种方法不同,链地址法不计算新的hash值,而是把所有H(key)相同的key连接成一条单链表。
这样可以设定一个数组Link,范围Link[0]~Link[mod-1],其中Link[h]存放H(key)=h的一条单链表,于是当多个关键字key的hash值都是h时,就可以直接把这些冲突的key直接用单链表连接起来,此时就可以遍历这条单链表来寻找所有H(key)=h的key。
字符串hash初步
如果key不是整数,如何设计散列函数?
例如,将一个二维整点P的坐标映射成一个整数,可以用线性变换H(key)=x*Range+y
字符串只由大写字母A~Z构成
将AZ视为025,那么对应26进制
1 | int hashFunc(char S[],int len){ |
注意:字符串长度不能太长!
字符串包含了大小写字母
AZ视为025,az视为2651
1 | int hashFunc(char S[],int len){ |
字符串包含大小写字母和数字
方法同上,只不过,最后直接在末尾加上对应数字即可,例如BCD4,731 4
还是用map吧!