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I. SPEECH PRODUCTION

A, VOCAL-TRACT AREA AND LENGTH PER'I‘URBATIONS
G. Fant

Abstract

A circuit-theory approach for deriving formulas for vocal-tract
cross-sectional area and length perturbations is outlined. It is
demonstrated that the effect of a non-uniform length scaling is pro-
portional to the spatial density »f stored reactive energy along the
vocal tract. This energy distribution also serves to define the rela-
tive cavity-resonance importance of various parts of the tract. The
formula is tested in a scaling of vowels with d.lfferent length factors
for the pharynx and the mouth. ‘ SRR e
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Introduction

This work was initiated in 1966 as a part of a compendium on speech

communication for a course at KTH, Fant (1967).

The sbject of the study has been to derive perturbation formulas from
circuit-theory concepts and to extend the theoretical analysis to include

non-uniform length perturbation,

Calculations of resonance frequencies and bandwidths

We shall consider the vocal tract as a transmission line with the

distributed inductance and capacitance per unit length
p /A(x)

2
A(x)/pec
where A(x) is the cross-sectional area at a coordinate x cm from the

i
glottis. The impedance Z(x) = [ L(x)/C(x)] % = pc/A(x). The density
-3
p = 1.2-10

ard speaking conditions. The distributed series resistance is denoted

L(x)

(1}

(1)

C(x)

g/cm3 and the velocity of sound ¢ = 35300 cm/s at stand-

R(x) and the shunt conductance G(x). Other sources of energy dissipa-
tion are the finite glottal resistance Rg’ the resistance of the vocal-traet

wall impedance Rw’ and the radiation resistance

e szs(w)

Ro=~Tme — @

The contribution of these dissipative elements to the bandwidth of
vocal resonances has been analyzed in detail by Fant (1960) and (1972)
and Fant and Pauli (1974). Losses through the wall impedance dominate
the bandwidth B1i of low first formants FF1. The surface losses through
R(x) and G(x) determine B,, B3, and B, when the lipopening is very nar-
row whilst the radiation resistance Ro(m) is the main determinant of BZ’
B3, and B4 when the entire vocal tract as well as the lips are open.

From standard circuit theory we can state the following theorem:
The poles 8,0, ju)n of a complex network are the same in any trans-
fer function defined by the ratio of any observed current or voltage to a
source current or voltage introduced without disturbing the impedance
structure. This is simply a consequence of the system determinant be-

ing the same. Appropriate sources are series voltages e; within a branch

{
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or constant currents feeding into a nodal point. Therefore the poles
may be found as the complex frequencies s, where the input impedance

Z.(s), as seen from any branch, equals zero or

[
H

Loy g

In general Z.i( s) is the sum of the impedances Z
looking right

P looking left and Zr

Z(s )= Z,+2_ =0 (4)

We shall study the input impedance at the open end of a uniform ideal
tube placed inside a spherical baffle of 9 cm radius simulating the head
of the speaker. The radiation resistance is intermediate between that
of a simple point source and a point source on the surface of an infinite
baffle. This relation is carried by the factor Ks{m]. in Eq. (2) which
varies between { and 1.7, see Fant (1960). The radiation inductance is
equal to that contained in a lengthening of the tube by 0, Bf}f?ﬁ' cm or

0.8 A /n!. p
it = 2

o A
o

The condition for finding the poles, Eq. (4), thus implies
£
Z.ul:ﬂthfﬂc— +al)+ Ro{m] +sL =0 (6)

Within the frequency range of a resonance Ru{m} is approximately a
G- Z

constant. The attenuation constant o = Zﬂé + 5 2. includes the sur-
o

face losses.

After inserting s = g + ju and expansion of cath{s?l' + o £) we equate

the real and the imaginary parts of the equation separately to zero.

Since the internal attenuation constant o << { and o = Rﬂfzﬂ < 0.4,
we may introduce approximations which reduce Eq. (6) to
w4 Z
n [s]
tg C - w_ L {7)

as in the loss-less case and

-[Ro{m} + af- Zo]
i L,+Z_i]c (8)
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After introducing the effective length of the tube

2 L+ 4
e ¢} (9)

L =0.8/Y AC',-/-TT

o

Eq. (8) may be rewritten
-R _(w,)

- 2
n=Zae "% (10

or

B:"'Frl': . :i_ Q"C'z (11) 1

B_ =B _+B, (12)

In the Appendix of Fant (1960) it is shown that resonance frequeﬁcies
and bandwidths calculated according to Egs. (7) and (11) agree well with
measurements on a physical model (wooden sphere as a baffle for a brass
tube of 16.4 cm length and 8 cm2 area, c = 34.400 cm/s at ZOOC). These

data are summarized in the following tabulation:

TABLE I-A-1.
purface | radiation total bandwidth
Fn Bin Bon Ro/zo KS(w) Bn Bn
Calc. Meas. | Calc. | Calc.| Calc. Calc. | Calc. Meas.
Hz Hz Hz Hz Hz Hz
Fi| 486 485 4.5 3.4 0.0055} 1.1 7.9 8
F2 11459 | 1459 7.9 43. 6} 0.07 1.6 51.5 44
F342445 | 2434 10.2 133 0. 20 1.7 143 128
F4 {3444 | 3442 12,1 225 0. 34 1. 45 | 237 228

This experiment (carried out in cooperation with A. Mgller in 1957)
verifies the assumptions of circuit constants as well as the theoretical
approach. The usefulness of the concept of the effective length
Lo =2+ 4 was demonstrated in the bandwidth calculations. Instead of
the more exact Eq. (7) we may calculate resonance frequencies of the

single tube from

cot =5 =9 (13)
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The errors in the first four formants are 0, -2, -16, -43 Hz, respec-

tively. With smaller lipopenings the errors become smaller.

The distribution of volume velocity and pressure inside the tract is

not affected by inclusion of the loss elements. This has been demonstrated
by Mrayati and Carré (1975) in a report where the calculations of Fant and
Pauli (1974) have been applied to French vowels. The effect is most no-
ticeable in open vowels where the radiation impedance dominates the loss
elements. Also the spatial distributions of pressure in the complete |
LEA-model for the Russian vowels agree well with those of the loss-less |
distributions calculated by Fant and Pauli (1974). In the general case of
an arbitrary vocal-tract configuration the bandwidths may be calculated
from the ratio of dissipated and stored energies per cycle of a mode, as
demonstrated by Fant and Pauli (1974) or from the interpolation of a |

complex system determinant, Fant (1970).

Perturbation theory

The approach followed here is to study the separate effects of changes,
AL(x) and A C{x), in the distributed elements L(x) and C(x), and to relate
the observed frequency shifts to equivalent changes, AA(x) and A(x) in
cross-sectional area and in unit length of a section of the transmission
line. Two different methods leading to the same result have been devel-
oped. One is concerned with the impedance condition for resonance as |
outlined in the previous section, the other starts out from the criterion

of kinetic energy of a mode equaling the potential energy of the mode.

As already discussed in the previous section, Eq. (4), the poles are
found as the complex frequencies providing zero branch impedance, as

seen from the element AL(x).
Z (%, s) + z, (x, s) +s- AL(%x) =0 (14)

Neglecting losses (as proved to be possible in the open tube case) the res-

onance frequencies w oy before the perturbation satisfy
X (% wni) = Xr(x’ wni) * Xﬂ(x’ u)ni) =0 (15)

Since any reactance increaues with frequency, the insertion of AL(x)

causes a negative frequency shift Ao =mo -0 of the resonance mode

(.l)n-
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dX(x, )
Awnl :w sl (wni+ Awni)AL(x) =0 (16)
and
Aw
ni _ -AL(x) 7
W g - X'(wni) + AL(x) (17)

Similarly, after insertion of A C(x), there is a shift bw 5= w 3" W 5

determined by:
dB(x,
AwnZ ——%a)—@l + (wnZ + AwnZ)AC(x) =0 (18)

where the su sceptance

-1 -1
B = T.‘. X - (19)
T £
and
Aw
n2 _ - A C(x) (20)
w0, B! (wn? + A C(x)
From Eqs. (19) and (15) we find
: 4 .yl
B' (x, o) = XZ(X’ w) = X_(x»z w) U (x, w) (21)
Xr(xv UJ) P (X, m)

It is now convenient to convert X! to an energy function. The power
input to a two-terminal network with input impedance Zi = pi/Ui is Zi . Uiz.

If all branches k contain reactances, wl) and/or (_D;CL’ the sum of the
reactive power stored in the reactances equals the reactive power input to

the terminal

2 _ 4 2
X, - U *Z[ka'R'k—]Uk (22)
After differentiation
dX.(w)
{ i 2 _ 1.2 1.2 1
2" Tde Vi T ZzUkMctIz Uz —=Ex tEp (23)
) Ck

Here E_  =E_, + EP is the sum of the total kinetic EK and the total poten-

T K
tial energy E From Eqs. (17) and (23),

P*
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2, \1
bay,  -dL9-UNRS -aEe( ”
- e =
®nt Ep + AL(x)U(x)5 E+AE (%)
Buggt®ny _%n2 __ Er (25)
051 0yy  EptdEg(x)

where AEK(x) is the increase of kinetic energy associated with the element

AL(x) and a constant current U(x).
" Similarly from Eqs. (20), (21), and (23)

1 .2 ' |
Awnz _ - -Z-'P (X)A C(x) -AEK(X) |

- - 26
“n2 ET+%P2(x)AC(x) Ep + 0E(x) (29

It is here under stood that P(x) pertains to the pressure before insertions

of AL(x) and that E. thus is the same as in Egs. (24) and (26). 1

®n3 Er

wha  Ep tER(¥)

(27)

Combining Eqs. (25) and (27) we get a total frequency shift which is ap-

proximately

n3 Ep
o, Ep+ AEP(x) + AEK(x)
pw _ “n3 " Yhy -[AEK(x) + AEP(x)]

= - 2
W " Ep + BE () + AEL(M) (29)

(28)

or

W,

We may now study the effect of a perturbation in A(x).

For small perturbations AA(x)/A(x) << 1, we can write

b Eg () = G55 - Byl = ;Afé'c? Eg(x)

_ AA(x) |
& EP(x) T OA(x EP(x)

(30)

The combined effect of distributed perturbations is then approximately

A(x
po _ Z[Eg(d - Ep(x ] 4708

w ZEL()+TEL() | (31)

as stated by Fant (1967), Fant and Pauli (1974). To derive the effects of

lengths perturbations A(x), we express the change in kinetic energy per

unit length
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BER(¥) =

i Ex(x) 1
(32)

Epd |

(32)

Retaining the denominator of Eq.(29) for increased accuracy and denoting

EK(x) + EP(x) = ET(x), we find

pw  TE8 ) Eq(x)

w T[T+ 8(]EL(%)

(33)

The alternative approach is to start out from the pressure-velocity

equations for the transmission line analog

L - U - L)

M = -ju)P(X) .

dx

(34)

A perturbatmn AL(x) introduces an excess of kinetic energy AE,(x) =

1

=3U (x)AL(x), which is compensated for by a frequency lowering that

increases the potential energy and/or decreases the kinetic energy in

other parts of the line. At resonance, before and after the perturbation

the kinetic energy equals the potential energy but we are free to chose

any relation between the actual energy levels before and after the per-

turbation. Assume U(x) and thus dU/dx approximately the same after

perturbation.

Kinetic energy

Potential energy

Before . 2
dUu i
pertur - E 5 )
bation K [(dx w2 C(x) ]
i
After 5
AL(x) du 1
pertur - EK + AEK(X) z [(dx ) > ]
bation w,, C(x)
or
2
w5 EK
wi EK + AEK(x)
and
w5 EK ET
w
i1 Eg +35AE (%) Er+ AEK(x)

~<

(35)

(36)

(37)
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which is identical to Eq. (25). Similarly, a perturbation AC(x) assuming
P(x) and dP(x)/dx to be approximately constant is associated with the fol-

lowing energy states

h
Kinetic energy Potential energy
Before
5 C(x) AP, 2 {
pertur- 2[(3?;-) wZ L(x) ] Ep
bation ) 2 > (38) 1
After 2 : -.l
A C(x) ap 1 !
© pertur- Z[(H_x_) 2 L(x) ] Ep + A Eg(x) |
bation ®3 |
or w. 2 E /
) = E=5hE ) (39)
Y2 P P

- 1
Since Ep =3 Ep we may approximate
Ep

3
»’ TEL FAEL( (40)

“vns”

(-

as in Eq. (27). For distributed perturbations, Eqs. (36) and (39) com-

bine to

(=3 )2 : ! (41)
g (1 + ZLAEL(%)/Ep(x) ]) (1 + 21 bEL(X)/EL(x) ])

Discussion and experimental validation

The relation between energy and frequency éhifts was discussed by
Schroeder (1967) with reference to perturbations in the uniform tube.
These relations, referred to as the Ehrenfest formula, are approximately
valid for an arbitrary shaped vocal tract, Fant (1967). Instead of the
simpler formula Aw/w = -AE/E we retain a higher degree of accuracy by
the relation Aw/w = -AE/(E+AE), as pointed out by Schroeder. We shall
see how this is validated by a uniform length perturbation, i.e. a simple
scale factor change in length dimension. Instead of A(x) in Eq. (33), we

introduce the constant A, which we relate to a new parameter : \
= . B
k= - 153 (42)
Eq. (33) thus reduces to

Aw
—— k
w (43)
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As an example, if a single tube resonator is doubled in length, i.e.

A = 1, the frequency shift is Aw/w = -0.5, which also holds for a gen-

eral shaped vocal tract. Eq. (43) implies that all formants are shifted

by k%, when an overall scale factor in length of A=-k/(1+k) is applied.
As verified numerically we can approximate Eq. (33) very well with the

expression

Aw ‘Z[iﬁaxx Ep(x)] Zlk(=EL(x)]
T T E(%) T TELN

(44)

which means that the relative frequency shift Aw/w is the energy
weighted average of the frequency shift factors k(x) applied to the sep-

arate parts of the vocal tract.

Uniform scaling in vocal-tract area, A A(x)/A(x) = constant, should
leave all resonance frequencies intact. This may be derived from per-
turbation formula, Eq. (31), since I EK(x) = EEP(x). For greater va-
lues of AA(x)/A(x) we have to write AL/L = -AA/A +)A) instead of
-AA/A and it is only Eq. (41) that then stands up to the test of Aw/w = O.

We are now in a position to make a more precise statement about the
uniform length scaling. The inverse proportionality of total length and
resonance frequencies holds exactly only if the end correction 0. 8/7{:7}_1'\
is scaled by the same factor as length dimensions., This condition would

hold for a simultaneous scaling of length and vocal-tract area by the same

linear factor.

It was suggested by Fant (1960) and again by Fant and Pauli (1974) that
the sum of the spatial kinetic and potential energy densities, i.e. ET(x),
is a suitable parameter for describing the '"cavity-resonance' dependency.
This is intuitively supported by the fact of ET(x) being constant along a
uniform tube resonator, all parts contributing the same to the tuning of

the mode.

In addition, we have now proved that the energy density is a measure
of the sensitivity of the tract to local expansions or contractions of the
length dimension. In Fig. I-A-1, pertaining to the six Russian vowels
studied by Fant (1960) and processed by Fant and Pauli (1974), this pa-
rameter ET(x) is denoted TOT = KIN+POT whilst the area perturbation
sensitivity LAG = KIN-POT of the same vowel is shown in Fig. 1-A-2.
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Fig., I-A-1,

KIN+ POT ENERGY DENSITY

il

KIN + POT ENERGY DENSITY

Spatial distribution of kinetic plus notential energy for the six Russian vowels of Fant (1960). From
Fant and Pauli (1974). These graphs are useful for predicting the effects of length perturbations.
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LAG=KIN-POT ENERGY DENSITY _ LAG=KIN-POT ENERGY DENSITY

Fig., I-A-2, Spatial distribution of kinetic energy KIN minus the potential energy POT for the six Russian vowels.
T This parameter, denoted LAG, the "Lagrangian'', displays the sensitivity to local area changes.
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As expected, in the regions of maximum KIN+POT the parameter
KIN-POT shows its largest oscillations. As has been pointed out many
times before, e.g. by Fant (1960) and Fant and Pauli (1974), we observe
the front part of the tract affiliation of F, of [+ ] and F3 of [i ] and the
back-part affiliation of F3 of [+ ] and F, of [i ]. There is also a peak
of prominence at the lipopening of F1 of [ u] and at the larynx tube for
F4 of all vowels. We can also observe the distribution of F3-energy of ]
[ul, [0o], and [@ ] in the middle part of the tract with a tendency of !
the F3-[ o |-energy to have its spatial peak in the mouth part of the tract.
These observations conform well with the results discussed by Fant (1975)
in the previous issue of the STL-QPSR. The specific sensitivities of 1
vowel formants to different scalings in the mouth and in the pharynx follow |
the energy distributions. However, the main tendency as observed by
Nordstrém (1975) is that of uniform shift of resonance frequencies in spite
of separate scaling factors being applied to the mouth and the pharyax. |
This average tendency conforms with the general impression of Fig. i
I-A-1 that in most vowels the energy of any mode is substantially spread
out over the entire tract. In a more detailed view, we observe the non-

uniform energy distributions discussed above.

W= shall now test the perturbation formula for separate scale factors
in the mouth and in the pharynx. Egq. (44) becomes

Ao | KBy TRy Ey
® E1+E2 (45)

where E1 is the total energy in the pharynx (from the glottis to the uvular
region) and E, is the total energy in the mouth (from the uvular region
to the point of radiation at the lips). If the pharynx is scaled to A 4 100
per cent increase in length, the associated frequency factor k, is defined

1
as -b - 100/( 144 1) per cent.

Results of perturbation of the [ i ]-tract by use of Eq. (45) are shown
in the following tabulation together with exact values calculated from the
Liljencrants-Fant (1975) program for converting area functions to reso-

nance frequencies.
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TABLE I-A-II. Length perturbation of the [ i J-vowel.

.ﬁfr.u .ﬂ.w;"’m
i FPerturhb.
Scaling km kp k Exact ertur
% To % %o %
Fo | Fa| Fo | ¥4
i. £m=-l'.'l.D5 5.3 17. 6 i1.6 14,5 7.5 15.5 7.7
==0.15
ﬁP
2. ﬂm=-D. 23 30 56 42 48 35.5 |51 35
=-0, 36
Jﬂ\l:"
3.=2. with 30 56 42 45 34 35
m-pdivi-
sion shift-
ed
=-1{.5 cm
4, = 3. but no 45,5 32
scaling of
end cor-
rection
5. ﬂ.m=-l).11 12.4 | 22 17.5 20 i4 20 14.5
h_ =-0,18
p

In scalings 1. -4. the end correction is scaled with the same factor
as the mouth. The constant end correction in 4. accounts for a larger
radiation inductance which counteracts the mouth cavity length reduction
and thus the relative Fj-increase. The conditions of scaling 5. provide
F,- and F3- shifts which are typical of females compared to males. Here
the mouth cavity is shortened 11 %, the pharynx by 18 %. The perturba-
tion formula provides almost the same formant shifts as the exact calcula-
tions, 20 % in F, and 14 % in F4. If the energy of these resonances had
been confined to the pharynx only and the mouth only, the shifts had been
22 % and 12.4 %, respectively. In the six language study of Fant (1975)
the average female-male differences were 21 % in F,and 13 % in Fj-
The particular convention for deciding the boundary between the pharynx
and the larynx has some influence on the Fz-shift observed, The bound-
ary point selected by Nordstrém (1975) was 1.5 cm below that of mine,
which accounts for a 3 % smaller shift in Fz and 1,5 % smaller shift in
F,, compare scalings 3. and 2. in Table I-A-II,
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One shortcoming of the energy distributions in Figs. I-A-1 and I-A-2
is thattifey~do not include the kinetic energy stored in the radiation reac-
- tance. However, it has been extrapolated and made use of in the present
perturbation calculations. It would be logical to extend the x-coordinate
of the energy function by the radiation inductance end-correction length
and to confine the kinetic energy of radiation % LOUCZ) to this interval
instead of lumping it all to the x=0 coordinate, as done by Mrayati and

Carre (1975).

Fig. I-A-2 serves as a guide for assessing how sensitive any mode
is to local area changes at any coordinate. These curves should not be
confused with the distributed perturbations affecting one resonance only,

as derived for instance by Heinz (1967).

A few characteristics can be mentioned. In all vowels I:"1 is raised
by a contraction of the pharynx. The expansion of the mouth cavity is
more effective in rising ]:"1 of front vowels than back vowels. An excep-
tion is the apparent influence of a lipopening in rising F1 of [u] and [0 ].
In[ o] and [a ] it is a narrow region a few cm above the larynx where

a contraction is maximally effective in rising F This might be a

1

factor of relevance to the large female-male difference in F, of maximally

1
open vowels,

F2 of {u], [ o], and { a ] are raised by an expansion of the middle or
upper part of the pharynx or by a contraction of the mouth cavity. An
expansion of the middle part of the pharynx of [ i ] or of the upper part
of the pharynx of [e ], raises Fz. F2 of [-1-] is almost insensitive to

pharyngeal perturbations. In all the back vowels F_ is raised by a

3
contraction in the uvular region.
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